EquiBind模型源码分析

news2025/1/14 18:20:26

EquiBind模型源码分析

使用提供的模型权重来预测你自己的蛋白质配体对的结合结构

  • 第 1 步:你需要什么作为输入
    mol2.sdf.pdbqt.pdb格式的配体文件,其名称包含字符串配体(配体文件应包含所有氢)。
    .pdb格式的受体文件,其名称包含字符串protein。我们运行reduce训练我们的蛋白质。也许你也想运行自己的蛋白质。

Reduce - 在 PDB 文件中添加和修正氢的工具

加载数据

读取配体信息

 读取配体sdf文件信息
lig = read_molecule(os.path.join(args.inference_path, name, lig_name), sanitize=True)#

读取受体信息

主要包括全原子的三维坐标, CA, N, C主干上原子的三维坐标

## 读取受体的信息
rec, rec_coords, c_alpha_coords, n_coords, c_coords = get_receptor_inference(rec_path)

Equibind数据处理

预处理受体信息

rec: 受体对象
rec_coords 受体全原子坐标
c_alpha_coords CA坐标
n_coords N坐标
c_coords C坐标
use_rec_atoms是否使用残基原子
rec_graph_radius
surface_max_neighbors 最大邻节点个数
surface_graph_cutoff 距离cut off 多少埃
surface_mesh_cutoff
c_alpha_max_neighbors CA最大邻节点

rec_graph = get_rec_graph(rec, rec_coords, c_alpha_coords, n_coords, c_coords,
                                  use_rec_atoms=dp['use_rec_atoms'], rec_radius=dp['rec_graph_radius'], #
                                  surface_max_neighbors=dp['surface_max_neighbors'],
                                  surface_graph_cutoff=dp['surface_graph_cutoff'],
                                  surface_mesh_cutoff=dp['surface_mesh_cutoff'],
                                  c_alpha_max_neighbors=dp['c_alpha_max_neighbors'])

将蛋白表示为结构

def get_calpha_graph(rec, c_alpha_coords, n_coords, c_coords, cutoff=20, max_neighbor=None):
    ################## Extract 3D coordinates and n_i,u_i,v_i vectors of representative residues 提取代表性残基的 3D 坐标和 n_i,u_i,v_i 向量################
    residue_representatives_loc_list = []
    n_i_list = []
    u_i_list = []
    v_i_list = []
    for i, residue in enumerate(rec.get_residues()):
        n_coord = n_coords[i] # N原子坐标
        c_alpha_coord = c_alpha_coords[i] # CA原子坐标
        c_coord = c_coords[i] # C原子坐标
        u_i = (n_coord - c_alpha_coord) / np.linalg.norm(n_coord - c_alpha_coord) # N-CA 向量
        t_i = (c_coord - c_alpha_coord) / np.linalg.norm(c_coord - c_alpha_coord) # C-CA 向量
        n_i = np.cross(u_i, t_i) / np.linalg.norm(np.cross(u_i, t_i)) # N-CA 与 C-CA 叉乘法向量
        v_i = np.cross(n_i, u_i) # N-CA 与 C-CA 叉乘法向量
        assert (math.fabs(
            np.linalg.norm(v_i) - 1.) < 1e-5), "protein utils protein_to_graph_dips, v_i norm larger than 1"
        n_i_list.append(n_i)
        u_i_list.append(u_i)
        v_i_list.append(v_i)
        residue_representatives_loc_list.append(c_alpha_coord)

    residue_representatives_loc_feat = np.stack(residue_representatives_loc_list, axis=0)  # (N_res, 3) CA原子坐标
    n_i_feat = np.stack(n_i_list, axis=0)
    u_i_feat = np.stack(u_i_list, axis=0)
    v_i_feat = np.stack(v_i_list, axis=0)
    num_residues = len(c_alpha_coords)
    if num_residues <= 1:
        raise ValueError(f"rec contains only 1 residue!")

    ################### Build the k-NN graph ##############################
    assert num_residues == residue_representatives_loc_feat.shape[0]
    assert residue_representatives_loc_feat.shape[1] == 3
    distances = spa.distance.cdist(c_alpha_coords, c_alpha_coords) #计算距离, 默认欧几里得距离
    src_list = []
    dst_list = []
    dist_list = []
    mean_norm_list = []
    for i in range(num_residues):
        dst = list(np.where(distances[i, :] < cutoff)[0]) # 距离小于30的
        dst.remove(i)
        if max_neighbor != None and len(dst) > max_neighbor: # 最大的邻节点过滤,
            dst = list(np.argsort(distances[i, :]))[1: max_neighbor + 1]
        if len(dst) == 0:
            dst = list(np.argsort(distances[i, :]))[1:2]  # choose second because first is i itself
            log(
                f'The c_alpha_cutoff {cutoff} was too small for one c_alpha such that it had no neighbors. So we connected it to the closest other c_alpha')
        assert i not in dst
        src = [i] * len(dst)
        src_list.extend(src)# 
        dst_list.extend(dst)#
        valid_dist = list(distances[i, dst])
        dist_list.extend(valid_dist)
        valid_dist_np = distances[i, dst]
        sigma = np.array([1., 2., 5., 10., 30.]).reshape((-1, 1))#
        weights = softmax(- valid_dist_np.reshape((1, -1)) ** 2 / sigma, axis=1)  # (sigma_num, neigh_num)
        assert weights[0].sum() > 1 - 1e-2 and weights[0].sum() < 1.01
        diff_vecs = residue_representatives_loc_feat[src, :] - residue_representatives_loc_feat[
                                                               dst, :]  # (neigh_num, 3)起始就是向量
        mean_vec = weights.dot(diff_vecs)  # (sigma_num, neigh_num) @ (neigh_num, 3)->(sigma_num, 3)
        denominator = weights.dot(np.linalg.norm(diff_vecs, axis=1))  # (sigma_num,)
        mean_vec_ratio_norm = np.linalg.norm(mean_vec, axis=1) / denominator  # (sigma_num,)
        mean_norm_list.append(mean_vec_ratio_norm)
    assert len(src_list) == len(dst_list)
    assert len(dist_list) == len(dst_list)
    graph = dgl.graph((torch.tensor(src_list), torch.tensor(dst_list)), num_nodes=num_residues, idtype=torch.int32)

    graph.ndata['feat'] = rec_residue_featurizer(rec)
    graph.edata['feat'] = distance_featurizer(dist_list, divisor=4)  # avg distance = 7. So divisor = (4/7)*7 = 4

    # Loop over all edges of the graph and build the various p_ij, q_ij, k_ij, t_ij pairs 在图的所有边上循环并构建各种p_ij、q_ij、k_ij、t_ij对
    edge_feat_ori_list = []
    for i in range(len(dist_list)):
        src = src_list[i]
        dst = dst_list[i]
        # place n_i, u_i, v_i as lines in a 3x3 basis matrix
        basis_matrix = np.stack((n_i_feat[dst, :], u_i_feat[dst, :], v_i_feat[dst, :]), axis=0)
        p_ij = np.matmul(basis_matrix,
                         residue_representatives_loc_feat[src, :] - residue_representatives_loc_feat[
                                                                    dst, :])
        q_ij = np.matmul(basis_matrix, n_i_feat[src, :])  # shape (3,)
        k_ij = np.matmul(basis_matrix, u_i_feat[src, :])
        t_ij = np.matmul(basis_matrix, v_i_feat[src, :])
        s_ij = np.concatenate((p_ij, q_ij, k_ij, t_ij), axis=0)  # shape (12,)
        edge_feat_ori_list.append(s_ij)
    edge_feat_ori_feat = np.stack(edge_feat_ori_list, axis=0)  # shape (num_edges, 4* 3)
    edge_feat_ori_feat = torch.from_numpy(edge_feat_ori_feat.astype(np.float32))
    graph.edata['feat'] = torch.cat([graph.edata['feat'], edge_feat_ori_feat], axis=1)  # (num_edges, 27)

    residue_representatives_loc_feat = torch.from_numpy(residue_representatives_loc_feat.astype(np.float32))
    graph.ndata['x'] = residue_representatives_loc_feat
    graph.ndata['mu_r_norm'] = torch.from_numpy(np.array(mean_norm_list).astype(np.float32))
    return graph

重点–> 非常重要的处理细节

  1. 构建局部坐标

    u i u_i ui α − C \alpha-C αC原子指向N原子的向量; t i t_i ti α − C \alpha-C αC原子指向C原子的向量;
    n i n_i ni是垂直于 u i u_i ui t i t_i ti的向量; v i v_i vi是垂直于 n i n_i ni u i u_i ui的向量
    那么 n i n_i ni v i v_i vi u i u_i ui两两垂直,构成了一个局部坐标系( u i , v i , n i u_i,v_i,n_i ui,vi,ni)
n_coord = n_coords[i] # N原子坐标
c_alpha_coord = c_alpha_coords[i] # CA原子坐标
c_coord = c_coords[i] # C原子坐标
u_i = (n_coord - c_alpha_coord) / np.linalg.norm(n_coord - c_alpha_coord) # N-CA 向量
t_i = (c_coord - c_alpha_coord) / np.linalg.norm(c_coord - c_alpha_coord) # C-CA 向量
n_i = np.cross(u_i, t_i) / np.linalg.norm(np.cross(u_i, t_i)) # N-CA 与 C-CA 叉乘法向量
v_i = np.cross(n_i, u_i) # N-CA 与 C-CA 叉乘法向量
  1. 构建KNN图表示
    受体图 G ′ = ( V ′ , E ′ ) G' = (V', E') G=(V,E)以残基作为节点,它们的 3D 坐标 X ′ ∈ R 3 × m X' \in R^{3 \times m} XR3×m 由 α-碳位置给出。图中的每个节点都以小于 30 A ˚ 30Å 30A˚的距离连接到最近的 10 个其他节点。受体节点特征 F ′ ∈ R d × m F' \in R^{d \times m} FRd×m
    for i in range(num_residues):
        dst = list(np.where(distances[i, :] < cutoff)[0]) # CA与CA距离小于30的
        dst.remove(i)# 移除自己和自己本身
        if max_neighbor != None and len(dst) > max_neighbor: # 最大的邻节点过滤,
            dst = list(np.argsort(distances[i, :]))[1: max_neighbor + 1]
        if len(dst) == 0:
            dst = list(np.argsort(distances[i, :]))[1:2]  # choose second because first is i itself
            log(
                f'The c_alpha_cutoff {cutoff} was too small for one c_alpha such that it had no neighbors. So we connected it to the closest other c_alpha')
        assert i not in dst
        src = [i] * len(dst)# 源节点
        src_list.extend(src)# 
        dst_list.extend(dst)#目标节点
        valid_dist = list(distances[i, dst])
        dist_list.extend(valid_dist)
        valid_dist_np = distances[i, dst]
        sigma = np.array([1., 2., 5., 10., 30.]).reshape((-1, 1))#
        weights = softmax(- valid_dist_np.reshape((1, -1)) ** 2 / sigma, axis=1)  # (sigma_num, neigh_num), 计算目标节点的权重
        assert weights[0].sum() > 1 - 1e-2 and weights[0].sum() < 1.01
        diff_vecs = residue_representatives_loc_feat[src, :] - residue_representatives_loc_feat[
                                                               dst, :]  # (neigh_num, 3)起始就是向量
        mean_vec = weights.dot(diff_vecs)  # (sigma_num, neigh_num) @ (neigh_num, 3)->(sigma_num, 3)
        denominator = weights.dot(np.linalg.norm(diff_vecs, axis=1))  # (sigma_num,) 分母
        mean_vec_ratio_norm = np.linalg.norm(mean_vec, axis=1) / denominator  # (sigma_num,) 旋转均值
        mean_norm_list.append(mean_vec_ratio_norm)
    assert len(src_list) == len(dst_list)
    assert len(dist_list) == len(dst_list)
    graph = dgl.graph((torch.tensor(src_list), torch.tensor(dst_list)), num_nodes=num_residues, idtype=torch.int32)  

同时使用了Surface Aware Node Features

表面接触建模对蛋白质对接很重要。这里设计了一种新的表面特征类型,将靠近蛋白质表面的残基与内部的残基区分开来。如上图所示,蛋白质内部的残基(左)被来自各个方向的矢量所包围,这些矢量相互抵消,而靠近表面的残基(右)只在一个较窄的锥体中有邻居,其孔径取决于表面的局部曲率。

通过上式得到5个表面感知节点特征, λ ∈ { 1. , 2. , 5. , 10. , 30. } \lambda \in \{1.,2.,5.,10.,30.\} λ{1.,2.,5.,10.,30.}

sigma = np.array([1., 2., 5., 10., 30.]).reshape((-1, 1))#
weights = softmax(- valid_dist_np.reshape((1, -1)) ** 2 / sigma, axis=1)  # (sigma_num, neigh_num), 计算目标节点的权重
assert weights[0].sum() > 1 - 1e-2 and weights[0].sum() < 1.01
diff_vecs = residue_representatives_loc_feat[src, :] - residue_representatives_loc_feat[
                                                      dst, :]  # (neigh_num, 3)起始就是向量
mean_vec = weights.dot(diff_vecs)  # (sigma_num, neigh_num) @ (neigh_num, 3)->(sigma_num, 3)
denominator = weights.dot(np.linalg.norm(diff_vecs, axis=1))  # (sigma_num,) 分母
mean_vec_ratio_norm = np.linalg.norm(mean_vec, axis=1) / denominator  # (sigma_num,) 每个残基旋转均值
mean_norm_list.append(mean_vec_ratio_norm)
  1. 残基图上特征
    节点特征使用残基类型sasa(表面溶剂接触面积)bfactor
def rec_residue_featurizer(rec):
    feature_list = []
    sr.compute(rec, level="R")# 计算实体的表面辅助功能表面积。
    for residue in rec.get_residues():
        sasa = residue.sasa
        for atom in residue:
            if atom.name == 'CA':
                bfactor = atom.bfactor
        assert not np.isinf(bfactor)
        assert not np.isnan(bfactor)
        assert not np.isinf(sasa)
        assert not np.isnan(sasa)
        feature_list.append([safe_index(allowable_features['possible_amino_acids'], residue.get_resname()),
                             sasa,
                             bfactor])
    return torch.tensor(feature_list, dtype=torch.float32)  # (N_res, 1)

边特征使用具有 15 个不同方差的高斯基函数编码的原子间距离

  • Distance-Based Edge Features
    距离也带有信息,这里使用距离的径向基函数作为边缘特征。

    其中 R R R和缩放参数 { σ r } 1 ≤ r ≤ R \{\sigma_r\}_{1\leq r \leq R} {σr}1rR是超参,论文中使用的缩放参数为 { 1. 5 x ∣ x = 0 , 1 , 2 , . . . , 14 } \{1.5^x|x=0,1,2,...,14\} {1.5xx=0,1,2,...,14},因此,对于每条边有15个基于距离的边特征。
def distance_featurizer(dist_list, divisor) -> torch.Tensor: # 您希望使用一个约数,该约数接近要编码的平均距离的4/7倍
    # you want to use a divisor that is close to 4/7 times the average distance that you want to encode
    length_scale_list = [1.5 ** x for x in range(15)]
    center_list = [0. for _ in range(15)]

    num_edge = len(dist_list)
    dist_list = np.array(dist_list)

    transformed_dist = [np.exp(- ((dist_list / divisor) ** 2) / float(length_scale))
                        for length_scale, center in zip(length_scale_list, center_list)]

    transformed_dist = np.array(transformed_dist).T
    transformed_dist = transformed_dist.reshape((num_edge, -1))
    return torch.from_numpy(transformed_dist.astype(np.float32))

边特征还是用局部骨架方向编码

  • Relative Position Edge Features
    边特征 p j → i p_{j \to i} pji,代表j相对于 i i i的相对位置
  • Relative Orientation Edge Features
    边缘特征 q j → i q_{j \to i} qji k j → i k_{j \to i} kji t j → i t_{j \to i} tji,表示 j j j相对于 i i i的相对方向。
    edge_feat_ori_list = []
    for i in range(len(dist_list)):
        src = src_list[i]
        dst = dst_list[i]
        # place n_i, u_i, v_i as lines in a 3x3 basis matrix
        basis_matrix = np.stack((n_i_feat[dst, :], u_i_feat[dst, :], v_i_feat[dst, :]), axis=0)
        p_ij = np.matmul(basis_matrix,
                         residue_representatives_loc_feat[src, :] - residue_representatives_loc_feat[
                                                                    dst, :])
        q_ij = np.matmul(basis_matrix, n_i_feat[src, :])  # shape (3,)
        k_ij = np.matmul(basis_matrix, u_i_feat[src, :])
        t_ij = np.matmul(basis_matrix, v_i_feat[src, :])
        s_ij = np.concatenate((p_ij, q_ij, k_ij, t_ij), axis=0)  # shape (12,)
        edge_feat_ori_list.append(s_ij)
    edge_feat_ori_feat = np.stack(edge_feat_ori_list, axis=0)  # shape (num_edges, 4* 3)
    edge_feat_ori_feat = torch.from_numpy(edge_feat_ori_feat.astype(np.float32))
    graph.edata['feat'] = torch.cat([graph.edata['feat'], edge_feat_ori_feat], axis=1)  # (num_edges, 27)

预处理配体信息

在配体中,边缘具有以与受体相同的方式编码的特征。这里不具体细讲
原子具有以下特征:原子数;手性;度;形式电荷;隐含价;连接氢的数量;自由基电子的数量;杂化类型;是否在芳环中;它有多少个环;最后,6 个特征表示它是否在大小为 3、4、5、6、7 或 8 的环中

def get_lig_graph_revised(mol, name, radius=20, max_neighbors=None, use_rdkit_coords=False):
    conf = mol.GetConformer()#前提,导入的原子必须带有坐标信息
    true_lig_coords = conf.GetPositions()
    if use_rdkit_coords:
        try:
            rdkit_coords = get_rdkit_coords(mol).numpy()
            R, t = rigid_transform_Kabsch_3D(rdkit_coords.T, true_lig_coords.T)
            lig_coords = ((R @ (rdkit_coords).T).T + t.squeeze())
            log('kabsch RMSD between rdkit ligand and true ligand is ', np.sqrt(np.sum((lig_coords - true_lig_coords) ** 2, axis=1).mean()).item())
        except Exception as e:
            lig_coords = true_lig_coords
            with open('temp_create_dataset_rdkit_timesplit_no_lig_or_rec_overlap_train.log', 'a') as f:
                f.write('Generating RDKit conformer failed for  \n')
                f.write(name)
                f.write('\n')
                f.write(str(e))
                f.write('\n')
                f.flush()
            print('Generating RDKit conformer failed for  ')
            print(name)
            print(str(e))
    else:
        lig_coords = true_lig_coords
    num_nodes = lig_coords.shape[0]
    assert lig_coords.shape[1] == 3
    distance = spa.distance.cdist(lig_coords, lig_coords)

    src_list = []
    dst_list = []
    dist_list = []
    mean_norm_list = []
    for i in range(num_nodes):
        dst = list(np.where(distance[i, :] < radius)[0])
        dst.remove(i)
        if max_neighbors != None and len(dst) > max_neighbors:
            dst = list(np.argsort(distance[i, :]))[1: max_neighbors + 1]  # closest would be self loop
        if len(dst) == 0:
            dst = list(np.argsort(distance[i, :]))[1:2]  # closest would be the index i itself > self loop
            log(
                f'The lig_radius {radius} was too small for one lig atom such that it had no neighbors. So we connected {i} to the closest other lig atom {dst}')
        assert i not in dst
        assert dst != []
        src = [i] * len(dst)
        src_list.extend(src)
        dst_list.extend(dst)
        valid_dist = list(distance[i, dst])
        dist_list.extend(valid_dist)
        valid_dist_np = distance[i, dst]
        sigma = np.array([1., 2., 5., 10., 30.]).reshape((-1, 1))
        weights = softmax(- valid_dist_np.reshape((1, -1)) ** 2 / sigma, axis=1)  # (sigma_num, neigh_num)
        assert weights[0].sum() > 1 - 1e-2 and weights[0].sum() < 1.01
        diff_vecs = lig_coords[src, :] - lig_coords[dst, :]  # (neigh_num, 3)
        mean_vec = weights.dot(diff_vecs)  # (sigma_num, 3)
        denominator = weights.dot(np.linalg.norm(diff_vecs, axis=1))  # (sigma_num,)
        mean_vec_ratio_norm = np.linalg.norm(mean_vec, axis=1) / denominator  # (sigma_num,)

        mean_norm_list.append(mean_vec_ratio_norm)
    assert len(src_list) == len(dst_list)
    assert len(dist_list) == len(dst_list)
    graph = dgl.graph((torch.tensor(src_list), torch.tensor(dst_list)), num_nodes=num_nodes, idtype=torch.int32)

    graph.ndata['feat'] = lig_atom_featurizer(mol)
    graph.edata['feat'] = distance_featurizer(dist_list, 0.75)  # avg distance = 1.3 So divisor = (4/7)*1.3 = ~0.75
    graph.ndata['x'] = torch.from_numpy(np.array(true_lig_coords).astype(np.float32))
    graph.ndata['mu_r_norm'] = torch.from_numpy(np.array(mean_norm_list).astype(np.float32))
    if use_rdkit_coords:
        graph.ndata['new_x'] = torch.from_numpy(np.array(lig_coords).astype(np.float32))
    return graph

节点特征

def lig_atom_featurizer(mol):     # 在所有PDB结合中,它们是93个分子的Nan。我们在这种情况下打0。
    ComputeGasteigerCharges(mol)  # they are Nan for 93 molecules in all of PDBbind. We put a 0 in that case. 计算出的partial charge存储在每个原子的属性中
    ringinfo = mol.GetRingInfo()
    atom_features_list = []
    for idx, atom in enumerate(mol.GetAtoms()):
        g_charge = atom.GetDoubleProp('_GasteigerCharge') # 通过GetDoubleProp(浮点数)或GetProp(字符串)来获取。
        atom_features_list.append([
            safe_index(allowable_features['possible_atomic_num_list'], atom.GetAtomicNum()),
            allowable_features['possible_chirality_list'].index(str(atom.GetChiralTag())),
            safe_index(allowable_features['possible_degree_list'], atom.GetTotalDegree()),
            safe_index(allowable_features['possible_formal_charge_list'], atom.GetFormalCharge()),
            safe_index(allowable_features['possible_implicit_valence_list'], atom.GetImplicitValence()),
            safe_index(allowable_features['possible_numH_list'], atom.GetTotalNumHs()),
            safe_index(allowable_features['possible_number_radical_e_list'], atom.GetNumRadicalElectrons()),
            safe_index(allowable_features['possible_hybridization_list'], str(atom.GetHybridization())),
            allowable_features['possible_is_aromatic_list'].index(atom.GetIsAromatic()),
            safe_index(allowable_features['possible_numring_list'], ringinfo.NumAtomRings(idx)),
            allowable_features['possible_is_in_ring3_list'].index(ringinfo.IsAtomInRingOfSize(idx, 3)),
            allowable_features['possible_is_in_ring4_list'].index(ringinfo.IsAtomInRingOfSize(idx, 4)),
            allowable_features['possible_is_in_ring5_list'].index(ringinfo.IsAtomInRingOfSize(idx, 5)),
            allowable_features['possible_is_in_ring6_list'].index(ringinfo.IsAtomInRingOfSize(idx, 6)),
            allowable_features['possible_is_in_ring7_list'].index(ringinfo.IsAtomInRingOfSize(idx, 7)),
            allowable_features['possible_is_in_ring8_list'].index(ringinfo.IsAtomInRingOfSize(idx, 8)),
            g_charge if not np.isnan(g_charge) and not np.isinf(g_charge) else 0.
        ])

    return torch.tensor(atom_features_list)

配体原子几何图

首先遍历分子原子,这些原子最为源节点, 然后找到两条跳内的邻居节点作为目标节点,边特征来自于节点间几何距离。

def get_geometry_graph(lig):
    coords = lig.GetConformer().GetPositions()
    edges_src = []
    edges_dst = []
    for i, atom in enumerate(lig.GetAtoms()):
        src_idx = atom.GetIdx()
        assert src_idx == i
        one_hop_dsts = [neighbor for neighbor in list(atom.GetNeighbors())]
        two_and_one_hop_idx = [neighbor.GetIdx() for neighbor in one_hop_dsts]
        for one_hop_dst in one_hop_dsts:
            for two_hop_dst in one_hop_dst.GetNeighbors():
                two_and_one_hop_idx.append(two_hop_dst.GetIdx())
        all_dst_idx = list(set(two_and_one_hop_idx))
        if len(all_dst_idx) ==0: continue
        all_dst_idx.remove(src_idx)
        all_src_idx = [src_idx] *len(all_dst_idx)
        edges_src.extend(all_src_idx)
        edges_dst.extend(all_dst_idx)
    graph = dgl.graph((torch.tensor(edges_src), torch.tensor(edges_dst)), num_nodes=lig.GetNumAtoms(), idtype=torch.long)
    graph.edata['feat'] = torch.from_numpy(np.linalg.norm(coords[edges_src] - coords[edges_dst], axis=1).astype(np.float32))
    return graph

Equibind模型

模型输入

  • 配体图:
    节点特征:原子相关化学特征、原子坐标(RDKIT重新生成)、Surface-aware node feature
    边特征:距离特征
  • 受体图:
    节点特征:α-C原子坐标、surface-aware node feature、氨基酸名称位置索引,溶剂接触表面积,bfactor(晶体衍射因子)
    边特征:距离、相对位置、相对角度特征
  • 配体几何图:
    边特征:距离(数据真实坐标计算得来)

网络层

IEGMN(等变图匹配网络)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/162672.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

leetcode.1819 序列中不同最大公约数的数目 - gcd + 枚举

1819. 序列中不同最大公约数的数目 目录 1、java版 2、c版 思路&#xff1a; 有n个元素的数组&#xff0c;则其子序列有 个&#xff0c;而1 ≤ n ≤ &#xff0c;则不可能枚举每一个子序列计算它的gcd&#xff0c;那样会tle我们可以逆转思路&#xff0c;因为1 ≤ nums[i]…

PhysioNet2017数据集介绍

一、数据集下载 PhysioNet2017为短单导联心电图记录的房颤分类数据集&#xff0c;下载地址如下&#xff1a;https://www.physionet.org/content/challenge-2017/1.0.0/ 二、数据集介绍 PhysioNet2017数据集主要用于对记录是否显示正常窦性心律、心房颤动&#xff08;AF&…

背包问题= =

一、01背包有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。第 i件物品的体积是 vi&#xff0c;价值是 wi。求解将哪些物品装入背包&#xff0c;可使这些物品的总体积不超过背包容量&#xff0c;且总价值最大。输出最大价值。&#xff08;下图是例子&#xff0c;一下…

14、ThingsBoard-自定义华为云SMS规则节点

1、概述 一个物联网平台承载着很多设备的连接,当设备出现异常的时候,能够快速的通知到运维管理员是非常重要的,thingsboard提供了自定义配置邮箱,但是它对支持发送短信的不是很友好,都是国外的sms服务商,我反正是不用那个,在国内常见就是阿里、腾讯、华为、七牛常用的s…

【Python百日进阶-数据分析】Day224 - plotly漏斗图px.funnel()

文章目录一、语法二、参数三、返回值四、实例4.1 使用 plotly.express 的漏斗图4.1.1 基本漏斗图4.1.2 堆积漏斗图4.1.3 基本区域漏斗图4.2 使用 plotly.graph_objects 的漏斗图4.2.1 基本漏斗图4.2.2 设置标记大小和颜色4.2.3 堆积漏斗图4.2.4 基本区域漏斗图4.2.5 在区域漏斗…

Postgresql遇到的问题

解决问题之前最好先下载个pgadmin可视化工具&#xff0c;下面可能要用到。先看图&#xff0c;了解基本的\n 代表是当前数据库下面schemas的文件\du 代表你有这写用户&#xff08;角色&#xff09;&#xff0c;后面代表的权限\l 代表的是你的数据库在敲命令之前你德先进去docker…

excel表格技巧:Ctrl+T在超级表中的妙用

在介绍超级表的其它奇妙功能之前&#xff0c;小编先给大家说一个在创建超级表时应该注意的小细节。在创建超级表的对话框里&#xff0c;有一个“表包含标题”的选项&#xff0c;大家一定要记得勾选哦&#xff0c;不然超级表就会变成下面这样&#xff1a;超级表会自作聪明的在表…

【ROS】package.xml文件解析

文章目录 文章目录 前言 一、基本格式 1.基本结构 2.必要标签 3.依赖关系 二、Metapackage包 总结 前言 ros每个功能包中都有一个包清单&#xff0c;它是一个名为package.xml的XML 文件&#xff0c;它必须包含在任何符合 catkin 的包的根文件夹中。此文件定义有关包的属…

Vue过滤器

Vue过滤器1. 概述2. 全局过滤器与局部过滤器2.1 过滤器参数2.2 过滤器的串联1. 概述 在Vue.js中&#xff0c;过滤器主要用于文本的格式化&#xff0c;或者组件数据的过滤与排序等。从Vue2.0.0版本开始&#xff0c;内置的过滤器已经被删除&#xff0c;需要自己编写。 2. 全局过…

【OpenGL学习】绘制三角形

绘制三角形 上节中完成了窗口的绘制&#xff0c;这节我们主要实现在窗口中完成一个最简单的三角形的绘制&#xff0c;同样&#xff0c;要完成一个三角形的绘制&#xff0c;需要以下内容&#xff1a; Vertex Array 存放顶点数据的数组&#xff08;实际上存放的是顶点数据的指针…

Imagination与Synopsys携手加快移动端与数据中心3D可视化技术的发展

IMG CXT GPU与Synopsys Fusion QIK一同优化移动光追应用的PPA中国北京 - 2023年1月13日- Imagination Technologies与领先的电子设计自动化&#xff08;EDA&#xff09;解决方案和服务商Synopsys一起为移动光追解决方案打造一个更加快速、高效的设计流程。光追技术通过模仿光线…

1.1、操作系统的概念、功能和目标

整体框架 1、操作系统的层次结构 对于操作系统&#xff1a; 负责管理协调硬件、软件登计算机资源的工作为上层的应用程序、用户提供简单易用的服务操作系统是系统软件&#xff0c;而不是硬件 对于裸机&#xff08;纯硬件&#xff09;&#xff1a; 例如&#xff1a;CPU、内存…

2023年音视频开发前景如何?音视频开发需要掌握哪些技术?

引言 音视频开发这一行业其实已经出现了有些年头了&#xff0c;但为什么现在就突然火爆了起来呢&#xff1f;实则就是两个字&#xff0c;需求&#xff1b;在这两年中&#xff0c;人们将工作、生活、学习相关的作业都其变成线上化&#xff0c;所以短视频、超高清视频和实时音视频…

【C++】STL容器:list的模拟实现

一、list的结构 1. list的节点 list的底层是一个带头双向循环链表&#xff0c;但list本身和list的节点是不同的结构&#xff0c;需要分开实现。 list节点的结构&#xff1a; template<class T> struct list_node {list_node<T>* _next;list_node<T>* _pre…

ELK日志(4)

搭建filebeatredislogstasheskibana架构&#xff0c;拓扑图参考ELK&#xff08;3&#xff09;安装redis&#xff0c;并启动&#xff08;1&#xff09;准备安装和数据目录[rootes ~]# mkdir -p /opt/redis_cluster/redis_6379/{conf,logs,pid}&#xff08;2&#xff09;下载redi…

CES 2023:推动低碳化与数字化,英飞凌塑造可持续未来

在参展CES 2023的3200多家企业当中&#xff0c;英飞凌虽然在规模上还比不上某些国际科技巨头&#xff0c;但是其展示的内容却相当引人瞩目。作为一家创立于1999年的高科技企业&#xff0c;英飞凌在全球总计拥有56个研发机构&#xff0c;20个生产工厂&#xff0c;其技术实力之雄…

fiddler 抓手机的包

目录 一、fiddler抓手机包的介绍 二、一个前提&#xff0c;及配置 1.前提 2.前提配置 三、两大步 1.设置fiddler 2.设置手机 一、fiddler抓手机包的介绍 Fiddler是一款非常流行并且实用的http抓包工具&#xff0c;它的原理是在本机开启了一个http的代理服务器&#xff…

分享111个JavaScript源码,总有一款适合您

JavaScript源码 分享111个JavaScript源码&#xff0c;总有一款适合您 源码下载链接&#xff1a;https://pan.baidu.com/s/1aUIpouX5nTwW1FF-8lStnw?pwdjh3v 提取码&#xff1a;jh3v 采集代码下载链接&#xff1a;采集代码.zip - 蓝奏云 ​ 下面是文件的名字&#xff0c;我放…

Golang Web Application

Golang Web Application GoLang Web App基本设置 1.导入库 导入fmt和net/http,http建立一个/和编写一个indexPage的函数,fmt编写一个写Hello world! package mainimport ("fmt""net/http" )func main() {http.HandleFunc("/", indexPage)http.L…

[数据结构复习]自用大纲

内容多基于王道和李春葆《数据结构教程》&#xff0c;做复习提纲之用 基本内容回顾 顺序队 队列是线性表&#xff08;具有逻辑上的前驱后继关系&#xff09;。头插尾删&#xff0c;先进先出。 队列的实现至少需要维护如下内容&#xff08;一数组&#xff0c;二指针&#xff…