【数据结构(邓俊辉)学习笔记】向量04——有序向量

news2025/1/19 20:30:32

文章目录

  • 0.概述
  • 1.比较器
  • 2.有序性甄别
  • 3.唯一化
    • 3.1低效算法
    • 3.1.1实现
    • 3.1.2 复杂度
    • 3.1.3 改进思路
    • 3.2 高效算法
      • 3.2.1 实现
      • 3.2.2 复杂度
  • 4.查找
    • 4.1统一接口
    • 4.2 语义定义
    • 4.3 二分查找
      • 4.3.1 原理
      • 4.3.2 实现
      • 4.3.3 复杂度
      • 4.3.4 查找长度
      • 4.3.5 不足
    • 4.4 Fibonacci查找
      • 4.4.1 改进思路
      • 4.4.2 黄金分割
      • 4.4.3 实现
      • 4.4.4 复杂度分析
      • 4.4.5 平均查找长度
    • 4.5 通用策略
    • 4.6 结论

0.概述

若向量S[0, n)中的所有元素不仅按线性次序存放,而且其数值大小也按此次序单调分布,则称作有序向量(sorted vector)。

1.比较器

有序向量的定义的先决条件:各元素之间必须能够比较大小和判等操作。这一条件构成了有序向量中“次序”概念的基础,否则所谓的“有序”将无从谈起。

复杂数据对象应重载"<“和”<="等操作符。

2.有序性甄别

在这里插入图片描述
算法思想:顺序扫描整个向量,逐一比较每一对相邻元素——向量已经有序,当且仅当它们都是顺序的。

template <typename T> 
int Vector<T>::disordered() const { //返回向量中逆序相邻元素对的总数
	int n = 0; //计数器
	for ( int i = 1; i < _size; i++ ) //逐一检查_size - 1对相邻元素
		if ( _elem[i - 1] > _elem[i] ) n++; //逆序则计数
	return n; //向量有序当且仅当n = 0
}

3.唯一化

出于效率的考虑,为清除无序向量中的重复元素,一般做法往往是首先将其转化为有序向量

3.1低效算法

3.1.1实现

算法思想:
在这里插入图片描述

template <typename T> 
int Vector<T>::uniquify() { //有序向量重复元素剔除算法(低效版)
	int oldSize = _size; int i = 1; //当前比对元素的秩,起始于首元素
	while ( i < _size ) //从前向后,逐一比对各对相邻元素
		_elem[i - 1] == _elem[i] ? remove ( i ) : i++; //若雷同,则初除后者;否则,转至后一元素
	return oldSize - _size; //向量觃模发化量,即被初除元素总数
}

3.1.2 复杂度

在这里插入图片描述
分析需用结论:remove()操作的复杂度线性正比于被删除元素的后继元素总数。不清除的可看无序向量。

最坏情况下:
当所有元素均雷同时,用于所有这些remove()操作的时间总量将高达:
(n - 2) + (n - 3) + … + 2 + 1= O( n 2 n^2 n2) 由算术级数得 。不清楚可看算法分析

这一效率竟与向量未排序时相同,说明该方法未能充分利用此时向量的有序性。

3.1.3 改进思路

反思:低效的根源在于,同一元素可作为被删除元素的后继多次前移
启示:若能以重复区间为单位,成批删除雷同元素,性能必能改进。

3.2 高效算法

3.2.1 实现

算法思想:
可以区间为单位成批地删除前后紧邻的各组重复元素,并将其后继元素(若存在)统一地大跨度前移。

template <typename T> 
Rank Vector<T>::uniquify() { //有序向量重复元素剔除算法(高效版)
   Rank i = 0, j = 0; //各对互异“相邻”元素的秩
   while ( ++j < _size ) //逐一扫描,直至末元素
      if ( _elem[i] != _elem[j] ) //跳过雷同者
         _elem[++i] = _elem[j]; //发现不同元素时,向前移至紧邻于前者右侧
   _size = ++i; shrink(); //直接截除尾部多余元素
   return j - i; //向量规模变化量,即被删除元素总数
}

3.2.2 复杂度

在这里插入图片描述
由此可知,uniquify()算法的时间复杂度应为O(n),较之无序向量唯一化算法的O( n 2 n^2 n2),效率整整提高了一个线性因子。关键在于向量已经排序

4.查找

4.1统一接口

为区别于无序向量的查找接口find(),有序向量的查找接口将统一命名为search()。外部接口形式上统一,内部实现算法却不见得完全统一。

template <typename T> //在有序向量的区间[lo, hi)内,确定不大于e的最后一个节点的秩
Rank Vector<T>::search( T const& e, Rank lo, Rank hi ) const { // 0 <= lo < hi <= _size
   return ( rand() % 2 ) ? binSearch( _elem, e, lo, hi ) : fibSearch( _elem, e, lo, hi );
} //等概率地随机使用二分查找、Fibonacci查找
  • 如何处理特殊情况?
    比如,目标不存在;或者反过来,目标元素同时存在多个

4.2 语义定义

在语义上进一步的细致约定,使search()接口作为一个基本部件为其他算法利用。

在有序向量区间V[lo,hi)中,确定不大于e的最后一个元素。
在这里插入图片描述

4.3 二分查找

4.3.1 原理

在这里插入图片描述
每经过至多两次比较操作,可以将查找问题简化为一个规模更小的新问题。如此,借助递归机制即可便捷地描述和实现此类算法。

4.3.2 实现

算法思想:减而治之

//二分查找算法(版本A):在有序向量的区间[lo, hi)内查找元素e,0 <= lo <= hi <= _size
template <typename T> static Rank binSearch( T* S, T const& e, Rank lo, Rank hi ) {
   /*DSA*/printf ( "BIN search (A)\n" );
   while ( lo < hi ) { //每步迭代可能要做两次比较判断,有三个分支
      /*DSA*/ for ( int i = 0; i < lo; i++ ) printf ( "     " ); if ( lo >= 0 ) for ( int i = lo; i < hi; i++ ) printf ( "....^" ); printf ( "\n" );
      Rank mi = ( lo + hi ) >> 1; //以中点为轴点(区间宽度折半,等效于其数值表示的右移一位)
      if      ( e < S[mi] ) hi = mi; //深入前半段[lo, mi)继续查找
      else if ( S[mi] < e ) lo = mi + 1; //深入后半段(mi, hi)继续查找
      else                  return mi; //在mi处命中
      /*DSA*/ if ( lo >= hi ) { for ( int i = 0; i < mi; i++ ) printf ( "     " ); if ( mi >= 0 ) printf ( "....|\n" ); else printf ( "<<<<|\n" ); }
   } //成功查找可以提前终止
   return -1; //查找失败
} //有多个命中元素时,不能保证返回秩最大者;查找失败时,简单地返回-1,而不能指示失败的位置
  • 通过快捷的整数移位操作回避了相对更加耗时的除法运算。
  • 通过引入lo、hi和mi等变量,将减治算法通常的递归模式改成了迭代模式。(递归消除)

4.3.3 复杂度

在这里插入图片描述
随着迭代的不断深入,有效的查找区间宽度将按1/2的比例以几何级数的速度递减。经过至多log2(hi - lo)步迭代后,算法必然终止。故总体时间复杂度不超过:
O( l o g 2 ( h i − l o ) log_2(hi - lo) log2(hilo)) = O(logn)
上图中的递归公式也可得出这个结论,递推公式不熟悉的可以看递推分析。

顺序查找算法的O(n)复杂度相比无序向量的查找find()无序向量,O(logn)几乎改进了一个线性因子(任意c > 0,logn = O( n c n^c nc))。

4.3.4 查找长度

查找算法的整体效率主要地取决于其中所执行的元素大小比较操作的次数,即所谓查找长度。

通常,需分别针对成功与失败查找,从最好、最坏、平均等角度评估

结论:此版二分查找成功、失败时的平均查找长度均大致为O(1.5logn)

4.3.5 不足

尽管二分查找算法(版本A)即便在最坏情况下也可保证O(logn)的渐进时间复杂度,但就其常系数1.5而言仍有改进余地。

4.4 Fibonacci查找

4.4.1 改进思路

在这里插入图片描述
解决问题的思路:

  1. 其一,调整前、后区域的宽度,适当地加长(缩短)前(后)子向量
  2. 其二,统一沿两个方向深入所需要执行的比较次数,比如都统一为一次

4.4.2 黄金分割

实际上,减治策略本身并不要求子向量切分点mi必须居中,故按上述改进思路,不妨按黄金分割比来确定mi。
在这里插入图片描述

4.4.3 实现

算法思路:减治策略——黄金分割比来确定mi

#include "fibonacci/Fib.h" //引入Fib数列类
//Fibonacci查找算法(版本A):在有序向量的区间[lo, hi)内查找元素e,0 <= lo <= hi <= _size
template <typename T> static Rank fibSearch( T* S, T const& e, Rank lo, Rank hi ) {
   /*DSA*/printf ( "FIB search (A)\n" );
   //用O(log_phi(n = hi - lo)时间创建Fib数列
   for ( Fib fib( hi - lo ); lo < hi; ) { //Fib制表备查;此后每步迭代仅一次比较、两个分支
      /*DSA*/ for ( Rank i = 0; i < lo; i++ ) printf ( "     " ); if ( lo >= 0 ) for ( Rank i = lo; i < hi; i++ ) printf ( "....^" ); else printf ( "<<<<|" ); printf ( "\n" );
      while ( hi - lo < fib.get() ) fib.prev(); //自后向前顺序查找(分摊O(1))
      Rank mi = lo + fib.get() - 1; //确定形如Fib(k)-1的轴点
      if      ( e < S[mi] ) hi = mi; //深入前半段[lo, mi)继续查找
      else if ( S[mi] < e ) lo = mi + 1; //深入后半段(mi, hi)继续查找
      else                  return mi; //在mi处命中
      /*DSA*/ if ( lo >= hi ) { for ( int i = 0; i < mi; i++ ) printf ( "     " ); if ( mi >= 0 ) printf ( "....|\n" ); else printf ( "<<<<|\n" ); }
   } //一旦找到,随即终止
   return -1; //查找失败
} //有多个命中元素时,不能保证返回秩最大者;失败时,简单地返回-1,而不能指示失败的位置

对Fib数不清楚得可以看fib

4.4.4 复杂度分析

进入循环之前调用构造器Fib(n = hi - lo),将初始长度设置为“不小于n的最小Fibonacci项”。这一步所需花费的O( l o g ϕ log_\phi logϕn)时间,分摊到后续O( l o g ϕ log_\phi logϕn)步迭代中,并不影响算法整体的渐进复杂度。

4.4.5 平均查找长度

结论:O(1.44∙log2n)

4.5 通用策略

在这里插入图片描述

4.6 结论

  • 二分查找算法的时间复杂度O(logn),平均查找长度O(1.5∙log2n)
  • Fibonacci查找算法的时间复杂度O(logn),平均查找长度O(1.44∙log2n)

Fibonacci查找算法效率略有提高。二分查找和Fibonacci查找还可改进,见

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1622406.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

AI-数学-高中-42导数的概念与意义

原作者视频&#xff1a;【导数】【一数辞典】1导数的概念与意义_哔哩哔哩_bilibili .a是加速度&#xff1b;

【Spring篇 | 补充】三级缓存解决循环依赖

文章目录 7.三级缓存解决循环依赖7.1何为循环依赖&#xff1f;7.2三级缓存解析7.3三级缓存解决循环依赖7.3.1实例化A7.3.2创建B的需求7.3.3实例化B7.3.4注入A到B7.3.5B创建完成7.3.6回溯至A7.3.7清理二级缓存 7.4为什么不能用二级缓存解决循环依赖&#xff1f; 7.三级缓存解决循…

【漏洞复现】通天星CMSV6车载监控平台ids SQL注入漏洞

漏洞描述&#xff1a; 通天星CMSV6车载定位监控平台拥有以位置服务、无线3G/4G视频传输、云存储服务为核心的研发团队&#xff0c;专注于为定位、无线视频终端产品提供平台服务&#xff0c;通天星CMSV6产品覆盖车载录像机、单兵录像机、网络监控摄像机、行驶记录仪等产品的视频…

微信小程序4~6章总结

目录 第四章 页面组件总结 4.1 组件的定义及属性 4.2 容器视图组件 4.2.1 view 4.2.2 scroll-view 4.2.3 swiper 4.3 基础内容组件 4.3.1 icon ​编辑 4.3.2 text 4.3.3 progress ​编辑 4.4 表单组件 4.4.1 button 4.4.2 radio 4.4.3 checkbox 4.4.4 switch …

网工学习云计算HCIE感受如何?

作为一名网工&#xff0c;我经常会在各种网络论坛里查询搜索一些网络技术资料&#xff0c;以及跟论坛里的网友交流讨论平时在工作、学习中遇到的问题、故障&#xff0c;因此也经常能在论坛的首页看到誉天的宣传信息。机缘巧合之下关注了誉天的B站号&#xff0c;自从关注了誉天的…

用 LMDeploy 高效部署 Llama-3-8B,1.8倍vLLM推理效率

节前&#xff0c;我们星球组织了一场算法岗技术&面试讨论会&#xff0c;邀请了一些互联网大厂朋友、参加社招和校招面试的同学&#xff0c;针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。 汇总…

嵌入式Linux driver开发实操(十八):Linux音频ALSA开发

应用程序程序员应该使用库API,而不是内核API。alsa库提供了内核API 100%的功能,但增加了可用性方面的主要改进,使应用程序代码更简单、更美观。未来的修复程序或兼容性代码可能会放在库代码中,而不是放在内核驱动程序中。 使用ALSA API和libasound进行简单的声音播放: /*…

Gartner发布攻击面管理创新洞察:CTEM、VA、EASM、CAASM、ASA、DRPS、BAS、VM等攻击面管理相关技术及关系

安全运营团队负责管理跨内部和外部数字资产的复杂攻击面。这项研究概述了攻击面评估空间&#xff0c;以帮助安全和风险管理领导者驾驭技术并改善其安全状况。 主要发现 随着本地和云中的技术环境变得越来越复杂和分散&#xff0c;组织必须管理不断增长的攻击面。 SaaS 应用程序…

wps/word中字体安装教程

问题&#xff1a;下载的字体怎么导入wps/word wps或word中没有相应字体&#xff0c;怎么导入。其实方法很简单。 Step 1&#xff1a;下载字体 首先&#xff0c;在网上搜索自己喜欢的字体&#xff0c;然后下载到本地。字体的格式通常是.ttf 下面是我网上找的字体&#xff08…

2024年度西安市创新联合体备案申报条件时间要求须知

一、申报条件 组建市级创新联合体需具备牵头单位、成员单位、组建协议、首席科学家等四个条件。 (一)牵头单位 1.牵头单位应为在西安市注册登记的省市产业链龙头骨干企业&#xff0c;重点支持市级重点产业链“链主”企业; 2.牵头单位一般为1家。 (二)成员单位 1.成员单位…

2024最新版JavaScript逆向爬虫教程-------基础篇之JavaScript密码学以及CryptoJS各种常用算法的实现

目录 一、密码学介绍1.1 为什么要学密码学?1.2 密码学里面学哪一些 二、字符编码三、位运算四、Hex 编码与 Base64 编码4.1 Hex 编码4.2 Base64 编码 五、消息摘要算法5.1 简介5.2 JS中的MD5、SHA、HMAC、SM3 六、对称加密算法6.1 介绍6.2 加密模式和填充方式6.3 CryptoJS 中D…

代理IP干货:如何正确使用防范风险?

在今天的数字时代&#xff0c;代理IP地址已成为互联网世界中不可或缺的一部分。无论您是寻求绕过地理限制、保护个人隐私还是执行网络任务&#xff0c;代理IP地址都发挥着关键作用。我们将为您探讨代理IP地址的重要性以及如何防范潜在的风险和威胁。 一、代理IP地址的潜在风险 …

CUDA编程技术概述

CUDA&#xff08;Compute Unified Device Architecture&#xff0c;统一计算设备架构&#xff09;是由英伟达&#xff08;NVIDIA&#xff09;公司推出的一种软硬件集成技术&#xff0c;是该公司对于GPGPU&#xff08;通用图形处理器计算&#xff09;的正式名称。透过这个技术&a…

微信小程序用户隐私协议保护指引自定义组件封装

这是一个微信小程序用户隐私协议保护指引自定义组件封装详细教程及代码。【建议收藏】 在做微信小程序有涉及表单提交&#xff0c;涉及用户信息收集时。提交代码会审核不过。 有需要了解到文档&#xff1a;https://developers.weixin.qq.com/miniprogram/dev/framework/user-pr…

超分辨率遥感图像去云的扩散增强训练

GitHub - littlebeen/Cloud-removal-model-collection: A collection of the existing end-to-end cloud removal model readme 云恢复的扩散增强 基于ADM的超分辨率遥感图像去云扩散增强算法。 几种传统的CR模型可以参考https://github.com/littlebeen/Cloud-removal-model-co…

短链接推荐:一个可以监测用户行为的“营销神器”

客户对我的推广有兴趣吗&#xff1f;他喜欢我的产品吗&#xff1f;他打开了我的营销信息吗&#xff1f;这三个问题相信每一位推广者都遇到过。接下来&#xff0c;就将给大家介绍一位大聪明——它能帮你监测每一位用户的行为&#xff0c;让你分分秒秒掌握用户的心理&#xff01;…

深入了解Redis内存淘汰策略中的LRU算法应用

LRU算法简析 LRU&#xff08;Least Recently Used&#xff0c;最近最少使用&#xff09;算法是一种常见的内存淘汰策略&#xff0c;它根据数据的访问时间来决定哪些数据会被淘汰。LRU算法的核心思想是&#xff1a;最久未被访问的数据&#xff0c;被认为是最不常用的数据&#…

UE5 GAS开发P41-43 永久效果,去除永久效果,伤害区域,EnumClass,开始重叠与结束重叠事件

这一部分学习了怎么创建一个伤害性的地形(火焰地形,毒沼泽等都可以用这个方式创建) AuraEffectActor.h // Fill out your copyright notice in the Description page of Project Settings.#pragma once#include "CoreMinimal.h" #include "GameplayEffect.h&q…

Linux驱动开发:掌握SPI通信机制

目录标题 1、SPI简介2、SPI通信机制3、Linux内核中的SPI支持4、SPI核心API5、SPI控制器驱动6、SPI设备驱动 7、编写SPI设备驱动8、调试SPI驱动 在Linux驱动开发中&#xff0c;串行外设接口(SPI)是一种常见的高速全双工通信协议&#xff0c;用于连接处理器和各种外设。本文将深入…

React【Day4下+5】

环境搭建 使用CRA创建项目&#xff0c;并安装必要依赖&#xff0c;包括下列基础包 Redux状态管理 - reduxjs/toolkit 、 react-redux路由 - react-router-dom时间处理 - dayjsclass类名处理 - classnames移动端组件库 - antd-mobile请求插件 - axios pnpm i reduxjs/toolkit r…