Seal^_^【送书活动第2期】——《Flink入门与实战》

news2024/12/23 3:19:27

Seal^_^【送书活动第2期】——《Flink入门与实战》

  • 一、参与方式
  • 二、本期推荐图书
    • 2.1 作者简介
    • 2.2 编辑推荐
    • 2.3 前 言
    • 2.4 本书特点
    • 2.5 内容简介
    • 2.6 本书适用读者
    • 2.7 书籍目录
  • 三、正版购买

一、参与方式

评论:"掌握Flink,驭大数据,实战无惧!",即可参与成功。

1、关注博主的账号。
2、点赞、收藏、评论博主的文章。
3、在文章下留下评论,每位参与者最多可以评论三次。

📚 本次抽奖将 送出1至3本 书籍,具体数量取决于活动期间的阅读量,阅读量越高,送出的书籍数量也会相应增加。

🕚 活动截止时间为 2024年4月30日晚上8点整。博主将会抽奖程序随机抽取幸运观众,并在动态中公布抽奖结果

如果您有特殊需求或想要获取更多福利,请添加博主的微信号(文末)、加入粉丝福利群

注意: 活动结束后,中奖观众将会收到博主的私信通知,请留意查看您的私信消息、关注博主动态查看中奖信息。

二、本期推荐图书

在这里插入图片描述

2.1 作者简介

汪明,中国矿业大学硕士,徐州软件协会副理事长,某创业公司合伙人。从事软件行业十余年,发表论文数十篇。著有图书《Python大数据处理库PySpark实战》《TypeScript实战》《Go并发编程实战》。

2.2 编辑推荐

1、由于阿里对Flink的收购以及改进,目前Flink社区非常活跃,社区一直致力于统一流处理和批处理API,并逐步增强Flink SQL相关功能,即期望通过SQL来满足大部分的大数据ETL处理场景。

2、Flink在百度、阿里、字节跳动、小米和腾讯等商业巨头中有成熟的应用,每日可以处理万亿的事件,且可以维护TB级别的状态信息。

3、如果你对实时大数据处理感兴趣,致力于构建分布式大数据处理应用程序,并且有一点Java编程基础,那么本书适合你。

4、本书先对Flink基本的安装过程进行说明,并对Flink分布式架构、内部数据处理过程等进行详细分析,最后结合一个综合案例讲解大数据实时处理过程。

5、本书以实例为主线,激发读者的阅读兴趣,让读者能够真正学习到Flink 最实用、最前沿的技术。

2.3 前 言

随着物联网、5G以及大数据技术的发展,人类已经进入大数据时代,毫不夸张地说,未来IT相关的职位,一项必备技能就是大数据处理能力。当前,人类基于大数据和人工智能等技术,在特定领域中可以大大提升业务系统的智能化水平。

人类对于计算速度的追求从未停止,即使面对海量的数据,我们也希望大数据框架可以在非常低的延迟下进行响应,从而提升用户的体验。

主流的分布式大数据计算框架有Storm、Spark和Flink,由于阿里对Flink的收购以及改进,目前Flink社区非常活跃,社区一直致力于统一流处理和批处理API,并逐步增强Flink SQL相关功能,即期望通过SQL来满足大部分的大数据ETL处理场景。另外,随着Flink SQL功能的增强和发展,也大大降低了Flink学习的难度。

目前,Flink在百度、阿里、字节跳动、小米和腾讯等商业巨头中有成熟的应用,每日可以处理万亿的事件,且可以维护TB级别的状态信息。Flink支持多种编程语言,可以用Java、Scala以及Python进行大数据业务处理。与此同时,Flink支持灵活的窗口计算以及乱序数据处理,这相对于其他大数据计算框架来说,有比较强的优势。

如果你对实时大数据处理感兴趣,致力于构建分布式大数据处理应用程序,并且有一点Java编程基础,那么本书适合你。本书作为Flink的入门教材,由浅入深地对Flink大数据处理方法进行介绍,特别对常用的DataStream API和DataSet API、Table API 和SQL进行了详细的说明,最后结合实战项目,将各个知识点有机整合,做到理论联系实际。

本书涉及的技术和框架:

本书涉及的技术和框架包括Flink、IntelliJ IDEA、Java、Kafka、jQuery、HTML5、Node.js、Maven。

2.4 本书特点

(1)理论联系实际。本书先对Flink基本的安装过程进行说明,并对Flink分布式架构、内部数据处理过程等进行详细分析,最后结合示例代码进行说明,做到理论联系实际。

(2)深入浅出、轻松易学。本书以实例为主线,激发读者的阅读兴趣,让读者能够真正学习到Flink 最实用、最前沿的技术。

(3)技术新颖、与时俱进。本书结合当前最热门的技术,如Node.js和HTML5等,让读者在学习Flink的同时,了解更多相关的先进技术。

(4)贴心提醒。本书根据需要在各章使用了很多“注意”小栏目,让读者可以在学习过程中更轻松地理解相关知识点及概念。

在这里插入图片描述

2.5 内容简介

Apache Flink是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态的计算,广泛应用于大数据相关的实际业务场景中。本书是一本从零开始讲解Flink的入门教材,学习本书需要有Java编程基础。

本书共分10章,内容包括Flink开发环境搭建、Flink架构和原理、时间和窗口、状态管理和容错机制、数据类型与序列化、DataStream API和DataSet API、Table API和SQL、Flink并行、Flink部署与应用,最后以一个Flink实战项目为例,对Flink相关知识进行综合实践,其中涉及Web页面展示、WebSocket协议和Node.js服务等技术。

本书内容详尽、示例丰富,适合作为Flink初学者必备的参考书,也非常适合作为高等院校和培训机构大数据及相关专业的师生教学参考。

2.6 本书适用读者

1、有一点Java编程基础的初学者

2、大数据处理与分析人员

3、 从事后端开发,对大数据开发有兴趣的人员

4、想用Flink构建大数据应用的人员

5、想从事大数据技术工作的大中专院校学生

6、Java开发和Java架构人员

7、大数据技术培训机构的师生

2.7 书籍目录

第1章 Flink环境搭建 1

1.1 下载安装 1

1.1.1 什么是Flink 1

1.1.2 Flink用户 3

1.1.3 JDK安装 4

1.1.4 Scala安装 7

1.1.5 Python安装 10

1.1.6 FinalShell安装 12

1.2 配置与开发工具 15

1.2.1 基础配置 15

1.2.2 IDEA开发工具 17

1.3 编译 19

1.3.1 Scala项目模板 19

1.3.2 Java项目模板 24

1.3.3 Python项目 28

1.3.4 项目编译 30

1.4 运行Flink应用 31

1.4.1 单机Standalone模式 31

1.4.2 多机Standalone模式 37

1.4.3 On Yarn集群模式 37

1.5 本章小结 38

第2章 定义、架构与原理 39

2.1 流处理的应用场景 39

2.1.1 数据预处理场景 40

2.1.2 预警场景 40

2.1.3 实时数量统计场景 40

2.1.4 数据库交互场景 40

2.1.5 跟踪场景 40

2.1.6 基于数据流的机器学习场景 41

2.1.7 实时自动控制场景 41

2.2 流处理的原理 41

2.2.1 流数据特征 41

2.2.2 Dataflow模型 42

2.2.3 数据流图 43

2.2.4 流处理操作 45

2.2.5 窗口操作 46

2.3 Flink架构分析 49

2.3.1 Flink常见概念 49

2.3.2 Flink主从架构 51

2.3.3 任务和算子链 52

2.4 Flink中的几个语义——Streams、State、Time、API 53

2.4.1 Streams流 53

2.4.2 State状态 54

2.4.3 Time时间 55

2.4.4 API接口 55

2.5 Flink组件 56

2.6 本章小结 57

第3章 时间和窗口 58

3.1 时间 58

3.1.1 Flink中的时间 58

3.1.2 时间的特性 60

3.2 Timestamp和Watermark 61

3.2.1 在SourceFunction中生成 61

3.2.2 在assignTimestampsAndWatermarks中生成 64

3.2.3 Watermarks传播机制 83

3.3 EventTime+Watermark解决乱序数据 95

3.3.1 无迟到的乱序数据 96

3.3.2 有迟到的乱序数据 104

3.4 WindowAssigner、Evictor以及Trigger 109

3.4.1 WindowAssigner 111

3.4.2 Trigger 116

3.4.3 Evictor 122

3.5 Window内部实现 126

3.5.1 Flink Window源码分析 126

3.5.2 Flink Window执行过程 130

3.6 Window使用 131

3.6.1 Time Window 131

3.6.2 Count Window 135

3.6.3 Session Window 138

3.6.4 自定义Window 140

3.7 Window聚合分类 144

3.7.1 增量聚合 144

3.7.2 全量聚合 146

3.8 本章小结 149

第4章 状态管理及容错机制 150

4.1 什么是状态 150

4.2 什么场景会用到状态 150

4.3 状态的类型与使用 151

4.3.1 Keyed State托管状态 152

4.3.2 Operator State托管状态 159

4.4 Checkpoint机制 162

4.4.1 Checkpoint配置 163

4.4.2 State Backends状态后端 164

4.4.3 重启策略 165

4.5 SavePoint机制 169

4.6 本章小结 169

第5章 数据类型与序列化 170

5.1 Flink的数据类型 170

5.1.1 元组类型 171

5.1.2 Java POJOs类型 172

5.1.3 Scala样例类 173

5.1.4 基础类型 174

5.1.5 普通类 175

5.1.6 值类型 177

5.1.7 特殊类型 177

5.2 序列化原理 178

5.3 Flink的序列化过程 181

5.4 序列化的最佳实践 186

5.5 本章小结 186

第6章 DataStream API和DataSet API 187

6.1 DataStream API 187

6.1.1 DataSources数据输入 187

6.1.2 DataSteam转换操作 195

6.1.3 DataSinks数据输出 214

6.2 DataSet API 222

6.2.1 DataSources数据输入 223

6.2.2 DataSet转换操作 227

6.2.3 DataSinks数据输出 235

6.3 迭代计算 238

6.3.1 全量迭代 239

6.3.2 增量迭代 240

6.4 广播变量与分布式缓存 244

6.4.1 广播变量 244

6.4.2 分布式缓存 246

6.5 语义注解 248

6.5.1 Forwarded Fileds注解 248

6.5.2 Non-Forwarded Fileds注解 249

6.5.3 Read Fields注解 250

6.6 本章小结 251

第7章 Table API和SQL 252

7.1 TableEnviroment 252

7.1.1 开发环境构建 253

7.1.2 TableEnvironment基本操作 254

7.1.3 外部连接器 257

7.1.4 时间概念 261

7.1.5 Temporal Tables时态表 263

7.2 WordCount 267

7.3 Table API的操作 268

7.3.1 获取Table 268

7.3.2 输出Table 272

7.3.3 查询Table 275

7.3.4 聚合操作 277

7.3.5 多表关联 278

7.3.6 集合操作 279

7.3.7 排序操作 281

7.4 DataStream、DataSet和Table之间的转换 282

7.4.1 DataStream to Table 283

7.4.2 DataSet to Table 284

7.4.3 Table to DataStream 285

7.4.4 Table to DataSet 287

7.5 window aggregate与non-window aggregate 288

7.6 Flink SQL使用 297

7.6.1 使用SQL CLI客户端 298

7.6.2 在流上运行SQL查询 299

7.6.3 Group Windows窗口操作 300

7.6.4 多表关联 306

7.6.5 集合操作 307

7.6.6 去重操作 308

7.6.7 Top-N操作 310

7.6.8 数据写入 311

7.7 自定义函数 313

7.7.1 Scalar Function 313

7.7.2 Table Function 315

7.7.3 Aggregation Function 317

7.8 本章小结 319

第8章 并行 320

8.1 Flink并行度 320

8.2 TaskManager和Slot 321

8.3 并行度的设置 322

8.3.1 执行环境层面 322

8.3.2 操作算子层面 323

8.3.3 客户端层面 324

8.3.4 系统层面 324

8.3.5 最大并行度 324

8.4 并行度案例分析 325

8.5 本章小结 329

第9章 Flink部署与应用 330

9.1 Flink集群部署 330

9.1.1 Standalone Cluster部署 330

9.1.2 Yarn Cluster部署 333

9.1.3 Kubernetes Cluster部署 334

9.2 Flink高可用配置 340

9.2.1 Standalone集群高可用配置 340

9.2.2 Yarn Session集群高可用配置 341

9.3 Flink安全管理 341

9.3.1 认证目标 341

9.3.2 认证配置 342

9.3.3 SSL配置 343

9.4 Flink集群升级 344

9.4.1 任务重启 344

9.4.2 状态维护 344

9.4.3 版本升级 344

9.5 本章小结 345

第10章 Flink项目实战 346

10.1 实时数据清洗(实时ETL) 346

10.1.1 需求分析 346

10.1.2 项目架构设计 346

10.1.3 项目代码实现 347

10.2 实时数据报表 357

10.2.1 需求分析 357

10.2.2 项目架构设计 357

10.2.3 项目代码实现 357

10.3 本章小结 362

三、正版购买

在这里插入图片描述

有兴趣的朋友可以前往查看。 tmall搜索关键词:

✨ Flink入门与实战,Flink ✨

🛒 链接直达:https://detail.tmall.com/item.htm?spm=a1z10.1-b.w9858442-8055933095.4.fH3HiL&id=651841634753

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1620216.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

想冲宇宙厂,直接挂了。。。

宇宙厂实际是字节,这个称呼是因为字节跳动主宰了宇宙内一切App,有点家大业大的意思。 今天分享一位字节春招凉经,问了一些数据库和Java八股,没出算法题,直接挂了,竟然最喜欢出算法题的字节,这次…

【嵌入式】“野指针”和“悬空指针”的奇淫拙劣

【嵌入式】“野指针”和“悬空指针”的奇淫拙劣 1. 前言1.1 授权须知 2. 野指针和悬空指针3.举例说明3.1 示例一:free 之后,没有让指针指向NULL3.1.1 代码解析3.1.2 运行代码的结果3.1.3 程序崩溃在哪? 3.2 悬空指针–释放后使用攻击 1. 前言…

JS----随机数字,字符,数组

随机数字 function random(min 0, max 100) {if (min > 0 && max > 0 && max > min) {const gab max - min 1return Math.floor(Math.random() * gab min)}return 0 }输入格式 随机字符 function randomStr (len 32) {var s for (; s.lengt…

产品经理好干吗?

赚钱的工作都不轻松吧,除非是家里资源好的。 产品经理的薪资还是可观的 ,小白如何成为产品经理? 首先要有经验,有理论知识,对想从事产品经理相关岗位的人来说,这基本是个必考的证书了,感兴趣的…

Java web应用性能分析之【Linux服务器性能监控分析概叙】

大多数场景,我们的Java web应用都是部署在linux环境,所以对linux服务器的性能指标需要有一个比较清晰的认识。Linux服务器的性能指标无非就5个方面:CPU、内存、磁盘、网络、文件系统。不同的性能指标都有对应的命令进行监控和查看&#xff08…

揭秘亚马逊、虾皮自养号测评:提升排名与流量的新策略

亚马逊一直是跨境电商平台中的佼佼者,每年新入驻亚马逊的商家也是非常多的,对于新入驻的卖家来说,如何在竞争激烈的市场中脱颖而出,增加流量并转化为订单,是摆在面前的重要任务。 一、亚马逊新店怎么增加流量&#xf…

验证线缆(汽车线束、网线、多芯线)破损或断开与正常线缆的区别在哪里?依AEM CV-100 k50测试仪

工厂产线生产的线缆(汽车线束、网线、多芯线)做成成品,即2端都安装好了模块。在这种情况下如何快速的判定此条线缆是合格的呢,此处的合格为物理层面上的合格(不会出现开路、短路),也就是最基本保…

pytorch-解决过拟合之regularization

目录 1.解决过拟合的方法2. regularization2. regularization分类3. pytorch L2 regularization4. 自实现L1 regularization5. 完整代码 1.解决过拟合的方法 更多的数据降低模型复杂度 regularizationDropout数据处理早停止 2. regularization 以二分类的cross entropy为例&…

前端三剑客 HTML+CSS+JavaScript ⑤ HTML文本标签

别困在过去,祝你有勇气开始,下一行 —— 24.4.24 一、文本标签 1.特点 1.用于包裹:词汇、短语等 2.通常写在排版标签里面(h1~h6、p、div) 3.排版标签更宏观(大段的文字),文本标签更微…

去雾笔记01-SRKTDN: Applying Super Resolution Method to Dehazing Task

文章目录 Abstract1. Introduction2. Related Work3. Method3.1. Network Architecture Abstract 们提出了一种结合超分辨方法和知识转移方法的模型。我们的模型由一个教师网络、一个去雾网络和一个超分辨率网络组成。 1. Introduction ECNU KT团队提出了一个知识蒸馏[20]模…

OpenAI 笔记:chat API

聊天模型接受一系列消息作为输入,并返回模型生成的消息作为输出。 1 导入openai 的api key from openai import OpenAIclient OpenAI(api_key***) 2 调用聊天API completion client.chat.completions.create(model"gpt-3.5-turbo",messages[{"…

09—DOM和BOM

一、DOM 1、HTML DOM (文档对象模型) 文档对象模型(Document Object Model,DOM)是表示和操作HTML和XML文档内容的基础API。当网页被加载时,浏览器会根据DOM模型,将结构化文档(比如HTML和XML)解…

3d模型合并怎么样不丢材质?---模大狮模型网

在3D设计中,合并模型是常见的操作,它可以帮助设计师将多个单独的模型组合成一个,从而简化场景并提高渲染效率。然而,合并模型时常常会面临一个棘手的问题:如何确保合并后的模型不丢失原有的材质?本文将探讨如何在合并…

Parallels Desktop 19完美中文版 PD19虚拟机详细图文安装教程 亲测兼容M1/M2

对于许多Mac用户来说,运行Windows应用程序是必不可少的。也许你的雇主使用的软件只适用于Windows,或者需要使用依赖于某些Windows技术的网站。或者你想在Mac上玩Windows游戏。或者,你可能需要在其他操作系统上测试应用程序和服务——你可以在…

【数据结构-图】

目录 1 图2 图的定义和基本概念(在简单图范围内)3 图的类型定义4 图的存储结构4.1 邻接矩阵 表示法4.2 邻接表 表示法4.3 十字链表 表示法4.4 邻接多重表 表示法 5 图的遍历5.1 深度优先搜索-DFS 及 广度优先遍历-BFS 6 图的应用6.1 最小生成树6.1.1 克鲁…

Azure AKS集群监控告警表达式配置

背景需求 Azure AKS集群中,需要对部署的服务进行监控和告警,需要创建并启用预警规则,而这里怎么去监控每个pod级别的CPU和内存,需要自己写搜索查询 解决方法 搜索和查询的语句如下,需要自己替换其中的部分信息,其中…

Qwen1.5微调

引子 由于工作上需要,一直在用Qwen做大模型推理,有个再训练的需求,特此琢磨下Qwen的训练。OK,我们开始吧。 一、安装环境 查看显卡驱动版本 根据官网推荐 OK,docker在手,天下我有。 docker pull qwenll…

vuetify3.0+tailwindcss+vite最新框架

1、根据vuetify官网下载项目 安装vuetify项目 2、根据tailwindcss官网添加依赖 添加tailwindcss依赖 3、 配置main.ts // main.ts import "./style.css"4、使用 <template><h1 class"text-3xl font-bold underline">Hello world!</…

sscanf和scanf区别

sscandf 从字符串中提取数据 scanf 标准输入流读取数据 int num; sscanf("42", "%d", &num);float f; sscanf("3.14", "%f", &f);char str[20]; sscanf("Hello, World!", "%s", str);int a, b; sscanf(…

信息系统项目管理师论文考察范围预测

在2023年下半年实施机考之前&#xff0c;论文的范围还是比较好预测的&#xff0c;因为从历年考题来看&#xff0c;可以说十大管理领域考察的概率接近100%&#xff0c;而且有一定规律&#xff0c;比如说某个管理领域很久没考了&#xff0c;那么考察的概率就相对大一点&#xff0…