AI大模型探索之路-认知篇3:大语言模型微调基础认知

news2025/1/10 17:10:22

文章目录

  • 前言
  • 一、微调技术概述
  • 二、微调的必要性
  • 三、大模型的微调方法
  • 四、微调过程中的技术细节
  • 五、微调后的模型评估与应用
  • 总结


前言

在人工智能的广阔研究领域内,大型预训练语言模型(Large Language Models, LLMs)已经成为推动技术革新的关键因素。这些模型通过在大规模数据集上的预训练过程获得了强大的语言理解和生成能力,使其能够在多种自然语言处理任务中表现出色。然而,由于预训练过程所产生的模型通常具有泛化特性,它们往往无法直接适配到特定的应用场景和细化需求中。为了弥补这一差距,研究人员提出了微调(Fine-tuning)技术。该技术允许模型通过学习额外的、与特定任务相关的数据,从而增强其在特定领域的表现力。本文旨在从专业角度深入探讨大型AI模型微调的概念框架、方法学及其在实际应用中的重要性。
在这里插入图片描述

一、微调技术概述

微调是在预先训练的模型基础上实施的一种有监督的训练策略。为了充分理解微调的应用背景,首先需了解AI大模型的关键使用阶段。以下为AI大模型应用的核心步骤概览:

1)Prompt工程:利用精心设计的自然语言提示指导大模型执行具体任务或解决特定问题。
2)Agent开发:结合大模型的强大能力,构筑各类应用程序,如智能知识库、自助查询系统等。

3)微调:采用有监督学习的方式,基于特定任务的数据对模型进行训练,以优化其预测效果。

4)预训练:通过无监督学习,使模型在大量文本数据上学习语言表示,以便用于后续的任务,如文本续写或分类。
在这里插入图片描述

二、微调的必要性

在这里插入图片描述

GPT-3训练一次的成本约为139.8万美元,而PaLM需要一千多万美元
尽管AI大模型在许多任务中取得了显著的成果,但它们仍然存在一些应用上的缺陷。这些缺陷主要表现在以下几个方面:
1)预训练成本巨大:大规模的模型预训练不仅需要大量的计算资源,同时耗费巨额的资金和时间。
2)行业数据分布的多样性:不同领域的数据分布有着根本的差异性,这导致通用预训练模型难以在所有任务中都达到理想的表现。
3)企业数据安全性:处理敏感的企业私有数据时,如何确保数据的安全性成为了必须解决的问题。
4)Prompt Engineering的高成本:设计有效的Prompt指导大模型完成特定任务过程既耗时又耗力。
5)外部知识的依赖性:大模型需要借助向量数据库等外部知识源来增强其知识储备和应用能力。

针对以上挑战,微调技术提供了一种高效的解决方案。通过对预训练模型进行针对性的微调,可以显著提升其在特定任务上的性能,降低推理成本,并在一定程度上确保企业数据的安全。

三、大模型的微调方法

目前,主流的大模型微调方法主要包含以下几种策略:
**1)全量微调FFT(Full Fine Tuning):**这种方法涉及调整整个模型的所有参数。虽然它可以在一定程度上提高模型性能,但同时也可能带来较高的训练成本和灾难性遗忘的风险。

2)部分参数微调PEFT(Parameter-Efficient Fine Tuning):这种方法仅调整部分参数,从而降低了训练成本。这包括在线模型和离线模型的微调。

在线模型:例如OpenAI发布的模型,可通过标准的微调流程进行调整。
离线模型:采用LoRA、QLoRA、Adapter、Prefix-tuning、P-tuning2、Prompt-tuning等技术进行更高效的微调
在这里插入图片描述
简单代码样例:

# 导入相关库
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

# 加载预训练模型和分词器
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

# 准备数据
inputs = tokenizer("Hello, I am a fine-tuned model.", return_tensors="pt")
labels = torch.tensor([1]).unsqueeze(0)

# 进行部分参数微调
for name, param in model.named_parameters():
    if "layer" in name:  # 只调整特定层数的参数
        param.requires_grad = True
    else:
        param.requires_grad = False

# 进行训练
outputs = model(**inputs, labels=labels)
loss = outputs.loss
loss.backward()
optimizer.step()

四、微调过程中的技术细节

在进行大模型的微调过程中,以下技术细节不容忽视:
1)数据预处理:根据特定任务的需求进行数据清洗与格式化,以确保输入数据的质量和适配性。
2)损失函数设计:根据不同任务的特点选择合适的损失函数,以指导模型优化正确的目标。
3)正则化策略:应用适当的正则化技术如权重衰减、Dropout等,防止过拟合,增强模型的泛化能力。
4)学习率调整:通过精心设计的学习率计划或自适应学习率算法,平衡训练过程中的收敛速度和稳定性。

五、微调后的模型评估与应用

经过微调的模型需要在多个层面进行评估,以保证其在实际环境中的有效性和鲁棒性:
1)性能指标:使用精确度、召回率、F1分数等标准度量来评价模型在特定任务上的表现。
2)实际应用场景测试:将模型部署到真实的应用环境中,检验其在实际操作中的可行性和效率。
3)对抗性测试:评估模型在面对对抗样本时的稳定性,确保其在潜在攻击下仍能保持正确和稳定的输出。


总结

AI大模型的微调作为一项核心技术,已在多个应用场景中证明了其不可或缺的价值。经过微调的预训练模型能够更加精准地适应特定任务,提升性能的同时降低成本。此外,微调后的模型在保护企业数据的隐私性和安全性方面也显示出其优势。随着技术的不断演进和深化,我们有理由相信,AI大模型的微调将在未来的发展中扮演更为关键的角色,并在更广泛的领域内实现其潜在的应用价值。

🔖更多专栏系列文章:AIGC-AI大模型探索之路

文章若有瑕疵,恳请不吝赐教;若有所触动或助益,还望各位老铁多多关注并给予支持。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1616820.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

软考132-上午题-【软件工程】-沟通路径

一、定义 1-1、沟通路径1 沟通路径 1-2、沟通路径2 沟通路径 n-1 二、真题 真题1: 真题2: 真题3:

C++感受6-Hello World 交互版

变量、常量输入、输出、流getline() 函数读入整行输入Hello() 函数复习新定义函数 Input() 实现友好的人机交互还有 “痘痘” 为什么挤不到的分析…… 1. DRY 原则简介 上一节课,我们写了两版“问候”程序。第一版的最大问题是重复的内容比较多,每一次问…

Netty快速入门

网络通信模型 在了解Netty之前,我们可以简单的先了解一下我们的网络通信方式,正所谓知其然,知其所以然。只有了解了网络通信模型,我们才能更好的去理解Netty的一些核心的原理。 如下图是一个简单的请求发送的时候的一个大概的HTT…

大型网站系统架构演化实例_6.使用分布式文件系统和分布式数据库系统

1.使用分布式文件系统和分布式数据库系统 任何强大的单一服务器都满足不了大型网站持续增长的业务需求。数据库经过读写分离后,从一台服务器拆分成两台服务器,但是随着网站业务的发展依然不能满足需求,这时需要使用分布式数据库。文件系统也一…

el-image组件预览图片同时操作页面

背景:el-image组件打开预览效果不能滑动页面。 Q:那么如何才能在打开遮罩层后还能操作页面呢? A:改变遮罩层的大小。CSS3有一个属性width:fit-content;可以解决这个问题。 打开F12看看饿了么的原生样式如下 加上width&#xff1…

AI大模型实现软件智能化落地实践

1、什么是大模型 大型语言模型(Large Language Model,LLM;Large Language Models,LLMs)。 大语言模型是一种深度学习模型,特别是属于自然语言处理(NLP)的领域,一般是指包含数干亿&…

在数字化转型过程中,企业的资产管理需要做出哪些调整?

在数字化转型过程中,企业的资产管理做出调整的常见于以下几个方面: 1、提高工作效率:数字化转型能够让员工在部门与部门之间的沟通更加顺畅,节省时间,提高效率。这要求企业在资产管理中采用数字化工具和流程&#xff…

高中数学:三角函数之考点精华-单调性问题

一、解题方法 1、换元 2、画图 3、反向求解 参考:整体换元法 二、练习 例题1 解析: 这一题,比较简单,是标准的换元法应用题。 这里稍微注意下第二小问的对称中心,因为,B1,所以,对…

单机三pxc节点集群,+docker-haproxy2.0负载均衡实现

一.下载 https://www.haproxy.org/download/2.0/src/haproxy-2.0.5.tar.gz 或者在这里下载(下面需要的各个配置文件都有): https://download.csdn.net/download/cyw8998/89170129 二.编写文件,制作docker镜像 1.Dockerfile&a…

恒峰智慧科技—森林消防泵,你了解多少?

在我们的日常生活中,森林火灾是一种非常危险的现象。为了保护森林资源和人民的生命财产安全,森林消防泵成为了一种非常重要的设备。那么,你对森林消防泵了解多少呢?本文将为您详细介绍森林消防泵的操作步骤、注意事项以及维护保养…

第⑮讲:Ceph集群管理与监控操作指南

文章目录 1.查看集群的状态信息2.动态的查看集群的状态信息3.查看集群的利用率4.查看OSD的资源利用率5.查看OSD的列表6.查看各组件的状态7.查看集群的仲裁信息8.查看/修改集群组件sock的配置参数 1.查看集群的状态信息 通过集群状态信息可以看到集群的健康状态、各个组件的运行…

Spark 中的分桶分化

Spark 中的分桶分化 Bucketing是 Spark 和 Hive 中用于优化任务性能的一种技术。在分桶桶(集群列)中确定数据分区并防止数据混洗。根据一个或多个分桶列的值,将数据分配给预定义数量的桶。 分桶有两个主要好处: 改进的查询性能&…

jvm(JVM快速入门、stack栈、堆、GC垃圾回收、Arthas)

文章目录 1. JVM快速入门1.1. 结构图1.2. 类加载器ClassLoader1.3. 执行引擎Execution Engine1.4. 本地接口Native Interface1.5. Native Method Stack1.6. PC寄存器(程序计数器)1.7. Method Area方法区 2. stack栈3. 堆3.1. 堆体系概述3.1.1. 新生区3.1.2. 老年代3.1.3. 永久代…

2024统计建模:大数据与人工智能时代的统计研究

文章目录 题目解读你需要具备的知识点课题推荐视频分析 题目解读 主要做的是“大数据”与“人工智能”。 其中“大数据”所涉及的的第一个就是大量的数据,数据从哪里来?拿到数据后,我们需要做基本的数据分析,如何对大量的数据进…

【UnityShader]使用Shader将图片进行水平/竖直镜像翻转

一、需求 在开发时从很多地方取出来的图片可能并不是图像原本的模样,可能是被水平或者竖直镜像翻转后的图形,这时候我们要将图片再次镜像回来,只需要一个小小的Shader即可。 二、实现 下面是镜像翻转Shader的思路: 一般来说我们在顶点着色…

C++奇迹之旅:从0开始实现日期时间计算器

文章目录 📝前言🌠 头文件Date.h🌉日期计算函数🌠前后置🌉前后置-- 🌠两对象日期相减🌉自定义流输入和输出 🌉 代码🌉 头文件Date.h🌠Date.cpp🌉 …

ECALL介绍

一、ECALL关键词介绍 ECALL:Emergency Call,紧急呼叫 PSTN:Public Switched Telephone Network MSD:Minimum Set of Data PLMN: Public Land Mobile Network PASP:Public Safety Answering Point IVS: in-vehicle system(车载系统)是内部的调制解调器,以全双工的方式…

【漏洞复现】手机卡号推广商城 login.php接口处存在 SQL 注入漏洞

免责声明:文章来源互联网收集整理,请勿利用文章内的相关技术从事非法测试,由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失,均由使用者本人负责,所产生的一切不良后果与文章作者无关。该…

STM32应用开发教程进阶--UART串口重定向(printf)

实现目标 1、掌握STM32 HAL库的串口重定向 2、具体目标:1、实现printf “打印”各种常用的类型的数据变量 一、串口“打印” UART串口通信协议是我们常用的通信协议(UART、I2C、SPI等)之一,全称叫做通用异步收发传输器&#xf…

卷积神经网络CNN入门

卷积神经网络应用领域 因为卷积神经网络主要应用场景就是计算机视觉任务,因此有必要简单介绍一下CV领域发展情况: 可以发现,在 ImageNet 图像数据集中分析图像的错误率十年间已经被深度学习给降低到了比人类(HuMan)识…