目标检测YOLO数据集的三种格式及转换

news2024/11/13 7:53:10

目标检测YOLO数据集的三种格式

在目标检测领域,YOLO(You Only Look Once)算法是一个流行的选择。为了训练和测试YOLO模型,需要将数据集格式化为YOLO可以识别的格式。以下是三种常见的YOLO数据集格式及其特点和转换方法。

1. YOLO的TXT格式

YOLO的TXT格式是最简单的数据集格式之一。它要求图片和标签分别存放在两个文件夹中,并按照一定的比例分为训练集和验证集。每个TXT文件包含目标的类别和边界框的坐标,格式如下:
在这里插入图片描述如图中所示,以.txt存放边界框信息

类别 [x_center, y_center, w, h]
  • 类别:目标的类别编号。
  • x_center, y_center, w, h:边界框的中心坐标和宽度、高度,这些值都是相对于整张图片的比例,小于1。

例如,使用makesense.ai标注后直接输出的就是TXT标签文件。为了训练,需要编写一个custom.yaml配置文件,指定路径和类别名称,然后使用官方的训练脚本。

2. VOC格式

VOC格式是一种更为复杂的数据集格式,它包含图片、标注和数据集分割。VOC格式由以下部分组成:
在这里插入图片描述VOC格式是以xml方式給出标注信息的

  • JPEGImages:存放数据集图片的文件夹。
  • Annotations:存放与图片对应的XML标注文件的文件夹。
  • ImageSets/Main:包含train.txt和val.txt文件,用于区分训练集和验证集。
<annotation>
  <folder>17</folder> # 图片所处文件夹
  <filename>77258.bmp</filename> # 图片名
  <path>~/frcnn-image/61/ADAS/image/frcnn-image/17/77258.bmp</path>
  <source>  #图片来源相关信息
    <database>Unknown</database>  
  </source>
  <size> #图片尺寸
    <width>640</width>
    <height>480</height>
    <depth>3</depth>
  </size>
  <segmented>0</segmented>  #是否有分割label
  <object> 包含的物体
    <name>car</name>  #物体类别
    <pose>Unspecified</pose>  #物体的姿态
    <truncated>0</truncated>  #物体是否被部分遮挡(>15%)
    <difficult>0</difficult>  #是否为难以辨识的物体, 主要指要结体背景才能判断出类别的物体。虽有标注, 但一般忽略这类物体
    <bndbox>  #物体的bound box
      <xmin>2</xmin>     #左
      <ymin>156</ymin>   #上
      <xmax>111</xmax>   #右
      <ymax>259</ymax>   #下
    </bndbox>
  </object>
</annotation>
'''
XML文件记录的是像素坐标,不是比例,因此在图像尺寸变化时可能会有轻微误差。可以使用Python脚本来将TXT格式的标注转换为XML格式,并进一步生成用于VOC格式的train.txt和val.txt文件。

#### 3. COCO格式
COCO格式是一种广泛使用的数据集格式,它将多个TXT文件转换为单个JSON文件。COCO格式的转换涉及以下步骤:

- 创建一个包含图像、标注和类别信息的字典。
- 将类别信息添加到JSON字典中。
- 将图像信息添加到JSON字典中。
- 将标注信息添加到JSON字典中。

COCO格式的转换通常通过编写Python脚本完成,该脚本读取TXT标注文件,并将它们转换为JSON格式。转换后,可以使用YOLOv4或YOLOr等YOLO变体进行训练。

### 转换示例
以下是一些用于转换数据集格式的Python代码示例:

#### TXT转XML
```python
def makexml(picPath, txtPath, xmlPath):
    # 省略了函数的具体实现,用于将YOLO格式的TXT标注文件转换为VOC格式的XML文件
    pass

格式转换

代码来源于知乎高赞文章,亲测好用无bug~

coco转voc

from pycocotools.coco import COCO
import os
from lxml import etree, objectify
import shutil
from tqdm import tqdm
import sys
import argparse
'''

# 将类别名字和id建立索引
def catid2name(coco):
    classes = dict()
    for cat in coco.dataset['categories']:
        classes[cat['id']] = cat['name']
    return classes


# 将标签信息写入xml
def save_anno_to_xml(filename, size, objs, save_path):
    E = objectify.ElementMaker(annotate=False)
    anno_tree = E.annotation(
        E.folder("DATA"),
        E.filename(filename),
        E.source(
            E.database("The VOC Database"),
            E.annotation("PASCAL VOC"),
            E.image("flickr")
        ),
        E.size(
            E.width(size['width']),
            E.height(size['height']),
            E.depth(size['depth'])
        ),
        E.segmented(0)
    )
    for obj in objs:
        E2 = objectify.ElementMaker(annotate=False)
        anno_tree2 = E2.object(
            E.name(obj[0]),
            E.pose("Unspecified"),
            E.truncated(0),
            E.difficult(0),
            E.bndbox(
                E.xmin(obj[1]),
                E.ymin(obj[2]),
                E.xmax(obj[3]),
                E.ymax(obj[4])
            )
        )
        anno_tree.append(anno_tree2)
    anno_path = os.path.join(save_path, filename[:-3] + "xml")
    etree.ElementTree(anno_tree).write(anno_path, pretty_print=True)


# 利用cocoAPI从json中加载信息
def load_coco(anno_file, xml_save_path):
    if os.path.exists(xml_save_path):
        shutil.rmtree(xml_save_path)
    os.makedirs(xml_save_path)

    coco = COCO(anno_file)
    classes = catid2name(coco)
    imgIds = coco.getImgIds()
    classesIds = coco.getCatIds()
    for imgId in tqdm(imgIds):
        size = {}
        img = coco.loadImgs(imgId)[0]
        filename = img['file_name']
        width = img['width']
        height = img['height']
        size['width'] = width
        size['height'] = height
        size['depth'] = 3
        annIds = coco.getAnnIds(imgIds=img['id'], iscrowd=None)
        anns = coco.loadAnns(annIds)
        objs = []
        for ann in anns:
            object_name = classes[ann['category_id']]
            # bbox:[x,y,w,h]
            bbox = list(map(int, ann['bbox']))
            xmin = bbox[0]
            ymin = bbox[1]
            xmax = bbox[0] + bbox[2]
            ymax = bbox[1] + bbox[3]
            obj = [object_name, xmin, ymin, xmax, ymax]
            objs.append(obj)
        save_anno_to_xml(filename, size, objs, xml_save_path)


def parseJsonFile(data_dir, xmls_save_path):
    assert os.path.exists(data_dir), "data dir:{} does not exits".format(data_dir)

    if os.path.isdir(data_dir):
        data_types = ['train2017', 'val2017']
        for data_type in data_types:
            ann_file = 'instances_{}.json'.format(data_type)
            xmls_save_path = os.path.join(xmls_save_path, data_type)
            load_coco(ann_file, xmls_save_path)
    elif os.path.isfile(data_dir):
        anno_file = data_dir
        load_coco(anno_file, xmls_save_path)


if __name__ == '__main__':
    """
    脚本说明:
        该脚本用于将coco格式的json文件转换为voc格式的xml文件
    参数说明:
        data_dir:json文件的路径
        xml_save_path:xml输出路径
    """

    parser = argparse.ArgumentParser()
    parser.add_argument('-d', '--data-dir', type=str, default='./data/labels/coco/train.json', help='json path')
    parser.add_argument('-s', '--save-path', type=str, default='./data/convert/voc', help='xml save path')
    opt = parser.parse_args()
    print(opt)

    if len(sys.argv) > 1:
        parseJsonFile(opt.data_dir, opt.save_path)
    else:
        data_dir = './data/labels/coco/train.json'
        xml_save_path = './data/convert/voc'
        parseJsonFile(data_dir=data_dir, xmls_save_path=xml_save_path)

coco转yolo

from pycocotools.coco import COCO
import os
import shutil
from tqdm import tqdm
import sys
import argparse

images_nums = 0
category_nums = 0
bbox_nums = 0

# 将类别名字和id建立索引
def catid2name(coco):
    classes = dict()
    for cat in coco.dataset['categories']:
        classes[cat['id']] = cat['name']
    return classes


# 将[xmin,ymin,xmax,ymax]转换为yolo格式[x_center, y_center, w, h](做归一化)
def xyxy2xywhn(object, width, height):
    cat_id = object[0]
    xn = object[1] / width
    yn = object[2] / height
    wn = object[3] / width
    hn = object[4] / height
    out = "{} {:.5f} {:.5f} {:.5f} {:.5f}".format(cat_id, xn, yn, wn, hn)
    return out


def save_anno_to_txt(images_info, save_path):
    filename = images_info['filename']
    txt_name = filename[:-3] + "txt"
    with open(os.path.join(save_path, txt_name), "w") as f:
        for obj in images_info['objects']:
            line = xyxy2xywhn(obj, images_info['width'], images_info['height'])
            f.write("{}\n".format(line))


# 利用cocoAPI从json中加载信息
def load_coco(anno_file, xml_save_path):
    if os.path.exists(xml_save_path):
        shutil.rmtree(xml_save_path)
    os.makedirs(xml_save_path)

    coco = COCO(anno_file)
    classes = catid2name(coco)
    imgIds = coco.getImgIds()
    classesIds = coco.getCatIds()

    with open(os.path.join(xml_save_path, "classes.txt"), 'w') as f:
        for id in classesIds:
            f.write("{}\n".format(classes[id]))

    for imgId in tqdm(imgIds):
        info = {}
        img = coco.loadImgs(imgId)[0]
        filename = img['file_name']
        width = img['width']
        height = img['height']
        info['filename'] = filename
        info['width'] = width
        info['height'] = height
        annIds = coco.getAnnIds(imgIds=img['id'], iscrowd=None)
        anns = coco.loadAnns(annIds)
        objs = []
        for ann in anns:
            object_name = classes[ann['category_id']]
            # bbox:[x,y,w,h]
            bbox = list(map(float, ann['bbox']))
            xc = bbox[0] + bbox[2] / 2.
            yc = bbox[1] + bbox[3] / 2.
            w = bbox[2]
            h = bbox[3]
            obj = [ann['category_id'], xc, yc, w, h]
            objs.append(obj)
        info['objects'] = objs
        save_anno_to_txt(info, xml_save_path)


def parseJsonFile(json_path, txt_save_path):
    assert os.path.exists(json_path), "json path:{} does not exists".format(json_path)
    if os.path.exists(txt_save_path):
        shutil.rmtree(txt_save_path)
    os.makedirs(txt_save_path)

    assert json_path.endswith('json'), "json file:{} It is not json file!".format(json_path)

    load_coco(json_path, txt_save_path)


if __name__ == '__main__':
    """
    脚本说明:
        该脚本用于将coco格式的json文件转换为yolo格式的txt文件
    参数说明:
        json_path:json文件的路径
        txt_save_path:txt保存的路径
    """
    parser = argparse.ArgumentParser()
    parser.add_argument('-jp', '--json-path', type=str, default='./data/labels/coco/train.json', help='json path')
    parser.add_argument('-s', '--save-path', type=str, default='./data/convert/yolo', help='txt save path')
    opt = parser.parse_args()

    if len(sys.argv) > 1:
        print(opt)
        parseJsonFile(opt.json_path, opt.save_path)
        # print("image nums: {}".format(images_nums))
        # print("category nums: {}".format(category_nums))
        # print("bbox nums: {}".format(bbox_nums))
    else:
        json_path = './data/labels/coco/train.json'  # r'D:\practice\compete\goodsDec\data\train\train.json'
        txt_save_path = './data/convert/yolo'
        parseJsonFile(json_path, txt_save_path)
        # print("image nums: {}".format(images_nums))
        # print("category nums: {}".format(category_nums))
        # print("bbox nums: {}".format(bbox_nums))
        

voc转coco

import xml.etree.ElementTree as ET
import os
import json
from datetime import datetime
import sys
import argparse

coco = dict()
coco['images'] = []
coco['type'] = 'instances'
coco['annotations'] = []
coco['categories'] = []

category_set = dict()
image_set = set()

category_item_id = -1
image_id = 000000
annotation_id = 0


def addCatItem(name):
    global category_item_id
    category_item = dict()
    category_item['supercategory'] = 'none'
    category_item_id += 1
    category_item['id'] = category_item_id
    category_item['name'] = name
    coco['categories'].append(category_item)
    category_set[name] = category_item_id
    return category_item_id


def addImgItem(file_name, size):
    global image_id
    if file_name is None:
        raise Exception('Could not find filename tag in xml file.')
    if size['width'] is None:
        raise Exception('Could not find width tag in xml file.')
    if size['height'] is None:
        raise Exception('Could not find height tag in xml file.')
    image_id += 1
    image_item = dict()
    image_item['id'] = image_id
    image_item['file_name'] = file_name
    image_item['width'] = size['width']
    image_item['height'] = size['height']
    image_item['license'] = None
    image_item['flickr_url'] = None
    image_item['coco_url'] = None
    image_item['date_captured'] = str(datetime.today())
    coco['images'].append(image_item)
    image_set.add(file_name)
    return image_id


def addAnnoItem(object_name, image_id, category_id, bbox):
    global annotation_id
    annotation_item = dict()
    annotation_item['segmentation'] = []
    seg = []
    # bbox[] is x,y,w,h
    # left_top
    seg.append(bbox[0])
    seg.append(bbox[1])
    # left_bottom
    seg.append(bbox[0])
    seg.append(bbox[1] + bbox[3])
    # right_bottom
    seg.append(bbox[0] + bbox[2])
    seg.append(bbox[1] + bbox[3])
    # right_top
    seg.append(bbox[0] + bbox[2])
    seg.append(bbox[1])

    annotation_item['segmentation'].append(seg)

    annotation_item['area'] = bbox[2] * bbox[3]
    annotation_item['iscrowd'] = 0
    annotation_item['ignore'] = 0
    annotation_item['image_id'] = image_id
    annotation_item['bbox'] = bbox
    annotation_item['category_id'] = category_id
    annotation_id += 1
    annotation_item['id'] = annotation_id
    coco['annotations'].append(annotation_item)


def read_image_ids(image_sets_file):
    ids = []
    with open(image_sets_file, 'r') as f:
        for line in f.readlines():
            ids.append(line.strip())
    return ids


def parseXmlFilse(data_dir, json_save_path, split='train'):
    assert os.path.exists(data_dir), "data path:{} does not exist".format(data_dir)
    labelfile = split + ".txt"
    image_sets_file = os.path.join(data_dir, "ImageSets", "Main", labelfile)
    xml_files_list = []
    if os.path.isfile(image_sets_file):
        ids = read_image_ids(image_sets_file)
        xml_files_list = [os.path.join(data_dir, "Annotations", f"{i}.xml") for i in ids]
    elif os.path.isdir(data_dir):
        # 修改此处xml的路径即可
        # xml_dir = os.path.join(data_dir,"labels/voc")
        xml_dir = data_dir
        xml_list = os.listdir(xml_dir)
        xml_files_list = [os.path.join(xml_dir, i) for i in xml_list]

    for xml_file in xml_files_list:
        if not xml_file.endswith('.xml'):
            continue

        tree = ET.parse(xml_file)
        root = tree.getroot()

        # 初始化
        size = dict()
        size['width'] = None
        size['height'] = None

        if root.tag != 'annotation':
            raise Exception('pascal voc xml root element should be annotation, rather than {}'.format(root.tag))

        # 提取图片名字
        file_name = root.findtext('filename')
        assert file_name is not None, "filename is not in the file"

        # 提取图片 size {width,height,depth}
        size_info = root.findall('size')
        assert size_info is not None, "size is not in the file"
        for subelem in size_info[0]:
            size[subelem.tag] = int(subelem.text)

        if file_name is not None and size['width'] is not None and file_name not in image_set:
            # 添加coco['image'],返回当前图片ID
            current_image_id = addImgItem(file_name, size)
            print('add image with name: {}\tand\tsize: {}'.format(file_name, size))
        elif file_name in image_set:
            raise Exception('file_name duplicated')
        else:
            raise Exception("file name:{}\t size:{}".format(file_name, size))

        # 提取一张图片内所有目标object标注信息
        object_info = root.findall('object')
        if len(object_info) == 0:
            continue
        # 遍历每个目标的标注信息
        for object in object_info:
            # 提取目标名字
            object_name = object.findtext('name')
            if object_name not in category_set:
                # 创建类别索引
                current_category_id = addCatItem(object_name)
            else:
                current_category_id = category_set[object_name]

            # 初始化标签列表
            bndbox = dict()
            bndbox['xmin'] = None
            bndbox['xmax'] = None
            bndbox['ymin'] = None
            bndbox['ymax'] = None
            # 提取box:[xmin,ymin,xmax,ymax]
            bndbox_info = object.findall('bndbox')
            for box in bndbox_info[0]:
                bndbox[box.tag] = int(box.text)

            if bndbox['xmin'] is not None:
                if object_name is None:
                    raise Exception('xml structure broken at bndbox tag')
                if current_image_id is None:
                    raise Exception('xml structure broken at bndbox tag')
                if current_category_id is None:
                    raise Exception('xml structure broken at bndbox tag')
                bbox = []
                # x
                bbox.append(bndbox['xmin'])
                # y
                bbox.append(bndbox['ymin'])
                # w
                bbox.append(bndbox['xmax'] - bndbox['xmin'])
                # h
                bbox.append(bndbox['ymax'] - bndbox['ymin'])
                print('add annotation with object_name:{}\timage_id:{}\tcat_id:{}\tbbox:{}'.format(object_name,
                                                                                                   current_image_id,
                                                                                                   current_category_id,
                                                                                                   bbox))
                addAnnoItem(object_name, current_image_id, current_category_id, bbox)

    json_parent_dir = os.path.dirname(json_save_path)
    if not os.path.exists(json_parent_dir):
        os.makedirs(json_parent_dir)
    json.dump(coco, open(json_save_path, 'w'))
    print("class nums:{}".format(len(coco['categories'])))
    print("image nums:{}".format(len(coco['images'])))
    print("bbox nums:{}".format(len(coco['annotations'])))


if __name__ == '__main__':
    """
   
    """
    parser = argparse.ArgumentParser()
    parser.add_argument('-d', '--voc-dir', type=str, default='data/label/voc', help='voc path')
    parser.add_argument('-s', '--save-path', type=str, default='./data/convert/coco/train.json', help='json save path')
    parser.add_argument('-t', '--type', type=str, default='train', help='only use in voc2012/2007')
    opt = parser.parse_args()
    if len(sys.argv) > 1:
        print(opt)
        parseXmlFilse(opt.voc_dir, opt.save_path, opt.type)
    else:
        # voc_data_dir = r'D:\dataset\VOC2012\VOCdevkit\VOC2012'
        voc_data_dir = './data/labels/voc'
        json_save_path = './data/convert/coco/train.json'
        split = 'train'
        parseXmlFilse(data_dir=voc_data_dir, json_save_path=json_save_path, split=split)

voc转yolo

import os
import json
import argparse
import sys
import shutil
from lxml import etree
from tqdm import tqdm

category_set = set()
image_set = set()
bbox_nums = 0


def parse_xml_to_dict(xml):
    """
    将xml文件解析成字典形式,参考tensorflow的recursive_parse_xml_to_dict
    Args:
        xml: xml tree obtained by parsing XML file contents using lxml.etree

    Returns:
        Python dictionary holding XML contents.
    """
    if len(xml) == 0:  # 遍历到底层,直接返回tag对应的信息
        return {xml.tag: xml.text}

    result = {}
    for child in xml:
        child_result = parse_xml_to_dict(child)  # 递归遍历标签信息
        if child.tag != 'object':
            result[child.tag] = child_result[child.tag]
        else:
            if child.tag not in result:  # 因为object可能有多个,所以需要放入列表里
                result[child.tag] = []
            result[child.tag].append(child_result[child.tag])
    return {xml.tag: result}


def write_classIndices(category_set):
    class_indices = dict((k, v) for v, k in enumerate(category_set))
    json_str = json.dumps(dict((val, key) for key, val in class_indices.items()), indent=4)
    with open('class_indices.json', 'w') as json_file:
        json_file.write(json_str)


def xyxy2xywhn(bbox, size):
    bbox = list(map(float, bbox))
    size = list(map(float, size))
    xc = (bbox[0] + (bbox[2] - bbox[0]) / 2.) / size[0]
    yc = (bbox[1] + (bbox[3] - bbox[1]) / 2.) / size[1]
    wn = (bbox[2] - bbox[0]) / size[0]
    hn = (bbox[3] - bbox[1]) / size[1]
    return (xc, yc, wn, hn)


def parser_info(info: dict, only_cat=True, class_indices=None):
    filename = info['annotation']['filename']
    image_set.add(filename)
    objects = []
    width = int(info['annotation']['size']['width'])
    height = int(info['annotation']['size']['height'])
    for obj in info['annotation']['object']:
        obj_name = obj['name']
        category_set.add(obj_name)
        if only_cat:
            continue
        xmin = int(obj['bndbox']['xmin'])
        ymin = int(obj['bndbox']['ymin'])
        xmax = int(obj['bndbox']['xmax'])
        ymax = int(obj['bndbox']['ymax'])
        bbox = xyxy2xywhn((xmin, ymin, xmax, ymax), (width, height))
        if class_indices is not None:
            obj_category = class_indices[obj_name]
            object = [obj_category, bbox]
            objects.append(object)

    return filename, objects


def parseXmlFilse(voc_dir, save_dir):
    assert os.path.exists(voc_dir), "ERROR {} does not exists".format(voc_dir)
    if os.path.exists(save_dir):
        shutil.rmtree(save_dir)
    os.makedirs(save_dir)

    xml_files = [os.path.join(voc_dir, i) for i in os.listdir(voc_dir) if os.path.splitext(i)[-1] == '.xml']
    for xml_file in xml_files:
        with open(xml_file) as fid:
            xml_str = fid.read()
        xml = etree.fromstring(xml_str)
        info_dict = parse_xml_to_dict(xml)
        parser_info(info_dict, only_cat=True)

    with open(save_dir + "/classes.txt", 'w') as classes_file:
        for cat in sorted(category_set):
            classes_file.write("{}\n".format(cat))

    class_indices = dict((v, k) for k, v in enumerate(sorted(category_set)))

    xml_files = tqdm(xml_files)
    for xml_file in xml_files:
        with open(xml_file) as fid:
            xml_str = fid.read()
        xml = etree.fromstring(xml_str)
        info_dict = parse_xml_to_dict(xml)
        filename, objects = parser_info(info_dict, only_cat=False, class_indices=class_indices)
        if len(objects) != 0:
            global bbox_nums
            bbox_nums += len(objects)
            with open(save_dir + "/" + filename.split(".")[0] + ".txt", 'w') as f:
                for obj in objects:
                    f.write(
                        "{} {:.5f} {:.5f} {:.5f} {:.5f}\n".format(obj[0], obj[1][0], obj[1][1], obj[1][2], obj[1][3]))


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--voc-dir', type=str, default='./data/labels/voc')
    parser.add_argument('--save-dir', type=str, default='./data/convert/yolo')
    opt = parser.parse_args()
    if len(sys.argv) > 1:
        print(opt)
        parseXmlFilse(**vars(opt))
        print("image nums: {}".format(len(image_set)))
        print("category nums: {}".format(len(category_set)))
        print("bbox nums: {}".format(bbox_nums))
    else:
        voc_dir = './data/labels/voc'
        save_dir = './data/convert/yolo'
        parseXmlFilse(voc_dir, save_dir)
        print("image nums: {}".format(len(image_set)))
        print("category nums: {}".format(len(category_set)))
        print("bbox nums: {}".format(bbox_nums))

yolo转coco

import argparse
import json
import os
import sys
import shutil
from datetime import datetime

import cv2

coco = dict()
coco['images'] = []
coco['type'] = 'instances'
coco['annotations'] = []
coco['categories'] = []

category_set = dict()
image_set = set()

image_id = 000000
annotation_id = 0


def addCatItem(category_dict):
    for k, v in category_dict.items():
        category_item = dict()
        category_item['supercategory'] = 'none'
        category_item['id'] = int(k)
        category_item['name'] = v
        coco['categories'].append(category_item)


def addImgItem(file_name, size):
    global image_id
    image_id += 1
    image_item = dict()
    image_item['id'] = image_id
    image_item['file_name'] = file_name
    image_item['width'] = size[1]
    image_item['height'] = size[0]
    image_item['license'] = None
    image_item['flickr_url'] = None
    image_item['coco_url'] = None
    image_item['date_captured'] = str(datetime.today())
    coco['images'].append(image_item)
    image_set.add(file_name)
    return image_id


def addAnnoItem(object_name, image_id, category_id, bbox):
    global annotation_id
    annotation_item = dict()
    annotation_item['segmentation'] = []
    seg = []
    # bbox[] is x,y,w,h
    # left_top
    seg.append(bbox[0])
    seg.append(bbox[1])
    # left_bottom
    seg.append(bbox[0])
    seg.append(bbox[1] + bbox[3])
    # right_bottom
    seg.append(bbox[0] + bbox[2])
    seg.append(bbox[1] + bbox[3])
    # right_top
    seg.append(bbox[0] + bbox[2])
    seg.append(bbox[1])

    annotation_item['segmentation'].append(seg)

    annotation_item['area'] = bbox[2] * bbox[3]
    annotation_item['iscrowd'] = 0
    annotation_item['ignore'] = 0
    annotation_item['image_id'] = image_id
    annotation_item['bbox'] = bbox
    annotation_item['category_id'] = category_id
    annotation_id += 1
    annotation_item['id'] = annotation_id
    coco['annotations'].append(annotation_item)


def xywhn2xywh(bbox, size):
    bbox = list(map(float, bbox))
    size = list(map(float, size))
    xmin = (bbox[0] - bbox[2] / 2.) * size[1]
    ymin = (bbox[1] - bbox[3] / 2.) * size[0]
    w = bbox[2] * size[1]
    h = bbox[3] * size[0]
    box = (xmin, ymin, w, h)
    return list(map(int, box))


def parseXmlFilse(image_path, anno_path, save_path, json_name='train.json'):
    assert os.path.exists(image_path), "ERROR {} dose not exists".format(image_path)
    assert os.path.exists(anno_path), "ERROR {} dose not exists".format(anno_path)
    if os.path.exists(save_path):
        shutil.rmtree(save_path)
    os.makedirs(save_path)
    json_path = os.path.join(save_path, json_name)

    category_set = []
    with open(anno_path + '/classes.txt', 'r') as f:
        for i in f.readlines():
            category_set.append(i.strip())
    category_id = dict((k, v) for k, v in enumerate(category_set))
    addCatItem(category_id)

    images = [os.path.join(image_path, i) for i in os.listdir(image_path)]
    files = [os.path.join(anno_path, i) for i in os.listdir(anno_path)]
    images_index = dict((v.split(os.sep)[-1][:-4], k) for k, v in enumerate(images))
    for file in files:
        if os.path.splitext(file)[-1] != '.txt' or 'classes' in file.split(os.sep)[-1]:
            continue
        if file.split(os.sep)[-1][:-4] in images_index:
            index = images_index[file.split(os.sep)[-1][:-4]]
            img = cv2.imread(images[index])
            shape = img.shape
            filename = images[index].split(os.sep)[-1]
            current_image_id = addImgItem(filename, shape)
        else:
            continue
        with open(file, 'r') as fid:
            for i in fid.readlines():
                i = i.strip().split()
                category = int(i[0])
                category_name = category_id[category]
                bbox = xywhn2xywh((i[1], i[2], i[3], i[4]), shape)
                addAnnoItem(category_name, current_image_id, category, bbox)

    json.dump(coco, open(json_path, 'w'))
    print("class nums:{}".format(len(coco['categories'])))
    print("image nums:{}".format(len(coco['images'])))
    print("bbox nums:{}".format(len(coco['annotations'])))


if __name__ == '__main__':
    """
    脚本说明:
        本脚本用于将yolo格式的标注文件.txt转换为coco格式的标注文件.json
    参数说明:
        anno_path:标注文件txt存储路径
        save_path:json文件输出的文件夹
        image_path:图片路径
        json_name:json文件名字
    """
    parser = argparse.ArgumentParser()
    parser.add_argument('-ap', '--anno-path', type=str, default='./data/labels/yolo', help='yolo txt path')
    parser.add_argument('-s', '--save-path', type=str, default='./data/convert/coco', help='json save path')
    parser.add_argument('--image-path', default='./data/images')
    parser.add_argument('--json-name', default='train.json')

    opt = parser.parse_args()
    if len(sys.argv) > 1:
        print(opt)
        parseXmlFilse(**vars(opt))
    else:
        anno_path = './data/labels/yolo'
        save_path = './data/convert/coco'
        image_path = './data/images'
        json_name = 'train.json'
        parseXmlFilse(image_path, anno_path, save_path, json_name)

yolo转voc

import argparse
import os
import sys
import shutil

import cv2
from lxml import etree, objectify

# 将标签信息写入xml
from tqdm import tqdm

images_nums = 0
category_nums = 0
bbox_nums = 0


def save_anno_to_xml(filename, size, objs, save_path):
    E = objectify.ElementMaker(annotate=False)
    anno_tree = E.annotation(
        E.folder("DATA"),
        E.filename(filename),
        E.source(
            E.database("The VOC Database"),
            E.annotation("PASCAL VOC"),
            E.image("flickr")
        ),
        E.size(
            E.width(size[1]),
            E.height(size[0]),
            E.depth(size[2])
        ),
        E.segmented(0)
    )
    for obj in objs:
        E2 = objectify.ElementMaker(annotate=False)
        anno_tree2 = E2.object(
            E.name(obj[0]),
            E.pose("Unspecified"),
            E.truncated(0),
            E.difficult(0),
            E.bndbox(
                E.xmin(obj[1][0]),
                E.ymin(obj[1][1]),
                E.xmax(obj[1][2]),
                E.ymax(obj[1][3])
            )
        )
        anno_tree.append(anno_tree2)
    anno_path = os.path.join(save_path, filename[:-3] + "xml")
    etree.ElementTree(anno_tree).write(anno_path, pretty_print=True)


def xywhn2xyxy(bbox, size):
    bbox = list(map(float, bbox))
    size = list(map(float, size))
    xmin = (bbox[0] - bbox[2] / 2.) * size[1]
    ymin = (bbox[1] - bbox[3] / 2.) * size[0]
    xmax = (bbox[0] + bbox[2] / 2.) * size[1]
    ymax = (bbox[1] + bbox[3] / 2.) * size[0]
    box = [xmin, ymin, xmax, ymax]
    return list(map(int, box))


def parseXmlFilse(image_path, anno_path, save_path):
    global images_nums, category_nums, bbox_nums
    assert os.path.exists(image_path), "ERROR {} dose not exists".format(image_path)
    assert os.path.exists(anno_path), "ERROR {} dose not exists".format(anno_path)
    if os.path.exists(save_path):
        shutil.rmtree(save_path)
    os.makedirs(save_path)

    category_set = []
    with open(anno_path + '/classes.txt', 'r') as f:
        for i in f.readlines():
            category_set.append(i.strip())
    category_nums = len(category_set)
    category_id = dict((k, v) for k, v in enumerate(category_set))

    images = [os.path.join(image_path, i) for i in os.listdir(image_path)]
    files = [os.path.join(anno_path, i) for i in os.listdir(anno_path)]
    images_index = dict((v.split(os.sep)[-1][:-4], k) for k, v in enumerate(images))
    images_nums = len(images)

    for file in tqdm(files):
        if os.path.splitext(file)[-1] != '.txt' or 'classes' in file.split(os.sep)[-1]:
            continue
        if file.split(os.sep)[-1][:-4] in images_index:
            index = images_index[file.split(os.sep)[-1][:-4]]
            img = cv2.imread(images[index])
            shape = img.shape
            filename = images[index].split(os.sep)[-1]
        else:
            continue
        objects = []
        with open(file, 'r') as fid:
            for i in fid.readlines():
                i = i.strip().split()
                category = int(i[0])
                category_name = category_id[category]
                bbox = xywhn2xyxy((i[1], i[2], i[3], i[4]), shape)
                obj = [category_name, bbox]
                objects.append(obj)
        bbox_nums += len(objects)
        save_anno_to_xml(filename, shape, objects, save_path)


if __name__ == '__main__':
    """
    脚本说明:
        本脚本用于将yolo格式的标注文件.txt转换为voc格式的标注文件.xml
    参数说明:
        anno_path:标注文件txt存储路径
        save_path:json文件输出的文件夹
        image_path:图片路径
    """
    parser = argparse.ArgumentParser()
    parser.add_argument('-ap', '--anno-path', type=str, default='./data/labels/yolo', help='yolo txt path')
    parser.add_argument('-s', '--save-path', type=str, default='./data/convert/voc', help='xml save path')
    parser.add_argument('--image-path', default='./data/images')

    opt = parser.parse_args()
    if len(sys.argv) > 1:
        print(opt)
        parseXmlFilse(**vars(opt))
        print("image nums: {}".format(images_nums))
        print("category nums: {}".format(category_nums))
        print("bbox nums: {}".format(bbox_nums))
    else:
        anno_path = './data/labels/yolo'
        save_path = './data/convert/voc1'
        image_path = './data/images'
        parseXmlFilse(image_path, anno_path, save_path)
        print("image nums: {}".format(images_nums))
        print("category nums: {}".format(category_nums))
        print("bbox nums: {}".format(bbox_nums))

图片可视化

coco格式,图片可视化

import argparse
import os
import sys
from collections import defaultdict
from xml import etree
from pycocotools.coco import COCO

import cv2
import matplotlib

matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
from tqdm import tqdm

category_set = dict()
image_set = set()
every_class_num = defaultdict(int)

category_item_id = -1


def addCatItem(name):
   global category_item_id
   category_item = dict()
   category_item_id += 1
   category_item['id'] = category_item_id
   category_item['name'] = name
   category_set[name] = category_item_id
   return category_item_id


def draw_box(img, objects, draw=True):
   for object in objects:
       category_name = object[0]
       every_class_num[category_name] += 1
       if category_name not in category_set:
           category_id = addCatItem(category_name)
       else:
           category_id = category_set[category_name]
       xmin = int(object[1])
       ymin = int(object[2])
       xmax = int(object[3])
       ymax = int(object[4])
       if draw:
           def hex2rgb(h):  # rgb order (PIL)
               return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))

           hex = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
                  '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')

           palette = [hex2rgb('#' + c) for c in hex]
           n = len(palette)
           c = palette[int(category_id) % n]
           bgr = False
           color = (c[2], c[1], c[0]) if bgr else c

           cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color)
           cv2.putText(img, category_name, (xmin, ymin), cv2.FONT_HERSHEY_SIMPLEX, 1, color)
   return img


# 将类别名字和id建立索引
def catid2name(coco):
   classes = dict()
   for cat in coco.dataset['categories']:
       classes[cat['id']] = cat['name']
   return classes


def show_image(image_path, anno_path, show=False, plot_image=False):
   assert os.path.exists(image_path), "image path:{} dose not exists".format(image_path)
   assert os.path.exists(anno_path), "annotation path:{} does not exists".format(anno_path)
   if not anno_path.endswith(".json"):
       raise RuntimeError("ERROR {} dose not a json file".format(anno_path))

   coco = COCO(anno_path)
   classes = catid2name(coco)
   imgIds = coco.getImgIds()
   classesIds = coco.getCatIds()
   for imgId in tqdm(imgIds):
       size = {}
       img = coco.loadImgs(imgId)[0]
       filename = img['file_name']
       image_set.add(filename)
       width = img['width']
       height = img['height']
       size['width'] = width
       size['height'] = height
       size['depth'] = 3
       annIds = coco.getAnnIds(imgIds=img['id'], iscrowd=None)
       anns = coco.loadAnns(annIds)
       objs = []
       for ann in anns:
           object_name = classes[ann['category_id']]
           # bbox:[x,y,w,h]
           bbox = list(map(int, ann['bbox']))
           xmin = bbox[0]
           ymin = bbox[1]
           xmax = bbox[0] + bbox[2]
           ymax = bbox[1] + bbox[3]
           obj = [object_name, xmin, ymin, xmax, ymax]
           objs.append(obj)

       file_path = os.path.join(image_path, filename)
       img = cv2.imread(file_path)
       if img is None:
           continue
       img = draw_box(img, objs, show)
       if show:
           cv2.imshow(filename, img)
           cv2.waitKey()
           cv2.destroyAllWindows()
   if plot_image:
       # 绘制每种类别个数柱状图
       plt.bar(range(len(every_class_num)), every_class_num.values(), align='center')
       # 将横坐标0,1,2,3,4替换为相应的类别名称
       plt.xticks(range(len(every_class_num)), every_class_num.keys(), rotation=90)
       # 在柱状图上添加数值标签
       for index, (i, v) in enumerate(every_class_num.items()):
           plt.text(x=index, y=v, s=str(v), ha='center')
       # 设置x坐标
       plt.xlabel('image class')
       # 设置y坐标
       plt.ylabel('number of images')
       # 设置柱状图的标题
       plt.title('class distribution')

       plt.savefig("class_distribution.png")
       plt.show()


if __name__ == '__main__':
   """
   脚本说明:
       该脚本用于coco标注格式(.json)的标注框可视化
   参数明说:
       image_path:图片数据路径
       anno_path:json标注文件路径
       show:是否展示标注后的图片
       plot_image:是否对每一类进行统计,并且保存图片
   """
   parser = argparse.ArgumentParser()
   parser.add_argument('-ip', '--image-path', type=str, default='./data/images', help='image path')
   parser.add_argument('-ap', '--anno-path', type=str, default='./data/labels/coco/train.json', help='annotation path')
   parser.add_argument('-s', '--show', action='store_true', help='weather show img')
   parser.add_argument('-p', '--plot-image', action='store_true')
   opt = parser.parse_args()

   if len(sys.argv) > 1:
       print(opt)
       show_image(opt.image_path, opt.anno_path, opt.show, opt.plot_image)
       print(every_class_num)
       print("category nums: {}".format(len(category_set)))
       print("image nums: {}".format(len(image_set)))
       print("bbox nums: {}".format(sum(every_class_num.values())))
   else:
       image_path = './data/images'
       anno_path = './data/labels/coco/train.json'
       show_image(image_path, anno_path, show=True, plot_image=True)
       print(every_class_num)
       print("category nums: {}".format(len(category_set)))
       print("image nums: {}".format(len(image_set)))
       print("bbox nums: {}".format(sum(every_class_num.values())))

voc格式,图片可视化

import os
import cv2
import matplotlib.pyplot as plt
from tqdm import tqdm
from lxml import etree
from collections import defaultdict
import argparse
import sys

category_set = dict()
image_set = set()
every_class_num = defaultdict(int)

category_item_id = -1


def draw_box(img, objects, draw=True):
    for object in objects:
        category_name = object['name']
        every_class_num[category_name] += 1
        if category_name not in category_set:
            category_id = addCatItem(category_name)
        else:
            category_id = category_set[category_name]
        xmin = int(object['bndbox']['xmin'])
        ymin = int(object['bndbox']['ymin'])
        xmax = int(object['bndbox']['xmax'])
        ymax = int(object['bndbox']['ymax'])
        if draw:
            def hex2rgb(h):  # rgb order (PIL)
                return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))

            hex = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
                   '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')

            palette = [hex2rgb('#' + c) for c in hex]
            n = len(palette)
            c = palette[int(category_id) % n]
            bgr = False
            color = (c[2], c[1], c[0]) if bgr else c

            cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color)
            cv2.putText(img, category_name, (xmin, ymin), cv2.FONT_HERSHEY_SIMPLEX, 1, color)
    return img


def addCatItem(name):
    global category_item_id
    category_item = dict()
    category_item_id += 1
    category_item['id'] = category_item_id
    category_item['name'] = name
    category_set[name] = category_item_id
    return category_item_id


def parse_xml_to_dict(xml):
    """
    将xml文件解析成字典形式,参考tensorflow的recursive_parse_xml_to_dict
    Args:
        xml: xml tree obtained by parsing XML file contents using lxml.etree

    Returns:
        Python dictionary holding XML contents.
    """
    if len(xml) == 0:  # 遍历到底层,直接返回tag对应的信息
        return {xml.tag: xml.text}

    result = {}
    for child in xml:
        child_result = parse_xml_to_dict(child)  # 递归遍历标签信息
        if child.tag != 'object':
            result[child.tag] = child_result[child.tag]
        else:
            if child.tag not in result:  # 因为object可能有多个,所以需要放入列表里
                result[child.tag] = []
            result[child.tag].append(child_result[child.tag])
    return {xml.tag: result}


def show_image(image_path, anno_path, show=False, plot_image=False):
    assert os.path.exists(image_path), "image path:{} dose not exists".format(image_path)
    assert os.path.exists(anno_path), "annotation path:{} does not exists".format(anno_path)
    anno_file_list = [os.path.join(anno_path, file) for file in os.listdir(anno_path) if file.endswith(".xml")]

    for xml_file in tqdm(anno_file_list):
        if not xml_file.endswith('.xml'):
            continue

        with open(xml_file) as fid:
            xml_str = fid.read()
        xml = etree.fromstring(xml_str)
        xml_info_dict = parse_xml_to_dict(xml)

        filename = xml_info_dict['annotation']['filename']
        image_set.add(filename)
        file_path = os.path.join(image_path, filename)
        if not os.path.exists(file_path):
            continue

        img = cv2.imread(file_path)
        if img is None:
            continue
        img = draw_box(img, xml_info_dict['annotation']['object'], show)
        if show:
            cv2.imshow(filename, img)
            cv2.waitKey()
            cv2.destroyAllWindows()
    if plot_image:
        # 绘制每种类别个数柱状图
        plt.bar(range(len(every_class_num)), every_class_num.values(), align='center')
        # 将横坐标0,1,2,3,4替换为相应的类别名称
        plt.xticks(range(len(every_class_num)), every_class_num.keys(), rotation=90)
        # 在柱状图上添加数值标签
        for index, (i, v) in enumerate(every_class_num.items()):
            plt.text(x=index, y=v, s=str(v), ha='center')
        # 设置x坐标
        plt.xlabel('image class')
        # 设置y坐标
        plt.ylabel('number of images')
        # 设置柱状图的标题
        plt.title('class distribution')

        plt.savefig("class_distribution.png")
        plt.show()


if __name__ == '__main__':
    
    脚本说明:
        该脚本用于voc标注格式(.xml)的标注框可视化
    参数明说:
        image_path:图片数据路径
        anno_path:xml标注文件路径
        show:是否展示标注后的图片
        plot_image:是否对每一类进行统计,并且保存图片
    """
    parser = argparse.ArgumentParser()
    parser.add_argument('-ip', '--image-path', type=str, default='./data/images', help='image path')
    parser.add_argument('-ap', '--anno-path', type=str, default='./data/labels/voc', help='annotation path')
    parser.add_argument('-s', '--show', action='store_true', help='weather show img')
    parser.add_argument('-p', '--plot-image', action='store_true')
    opt = parser.parse_args()

    if len(sys.argv) > 1:
        print(opt)
        show_image(opt.image_path, opt.anno_path, opt.show, opt.plot_image)
        print(every_class_num)
        print("category nums: {}".format(len(category_set)))
        print("image nums: {}".format(len(image_set)))
        print("bbox nums: {}".format(sum(every_class_num.values())))
    else:
        image_path = './data/images'
        anno_path = './data/convert/voc'
        show_image(image_path, anno_path, show=True, plot_image=True)
        print(every_class_num)
        print("category nums: {}".format(len(category_set)))
        print("image nums: {}".format(len(image_set)))
        print("bbox nums: {}".format(sum(every_class_num.values())))

总结

选择合适的数据集格式对于训练和部署YOLO模型至关重要。TXT格式简单易用,适合初学者和快速原型开发;VOC格式适合需要更详细标注信息的项目;而COCO格式则因其标准化和通用性,成为许多研究和实际应用的首选。了解这些格式及其转换方法,可以帮助研究人员和开发者更有效地处理目标检测任务。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1612986.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

https协议的加密方式详解

各位大佬能多多点赞关注评论收藏&#xff0c;球球各位大佬们了&#xff01;&#xff01; &#xff01; 目录 1.为什么要加密&#xff1f; 2.如何加密 1.密钥&#xff08;yue,第四声&#xff09; 2.对称加密 3.非对称加密 4.公证机构 3.总结 1.为什么要加密&#xff1f;…

【机器学习】朴素贝叶斯解决实际问题

之前写过这样一道题&#xff1a; 现在换成使用朴素贝叶斯解决这个问题 首先先了解一下朴素贝叶斯 这是之前课本里的笔记记录&#xff1a; 【机器学习笔记】朴素贝叶斯&#xff08;从先验分布到后验分布&#xff09;-CSDN博客 简单的讲解一下这道题需要的知识点 朴素贝叶斯是…

JVM-垃圾收集算法

前言 在 Java 中&#xff0c;垃圾收集&#xff08;Garbage Collection&#xff09;是一种自动管理内存的机制&#xff0c;它负责在运行时识别和释放不再被程序使用的内存&#xff0c;从而避免内存泄漏和悬空引用问题。本篇文章将介绍三种常见的垃圾收集算法。 标记-清除&…

11.接口自动化学习-Yaml学习

1.配置文件作用 配置文件项目角度&#xff1a; &#xff08;1&#xff09;现成的应用–第三方组件 mysql–数据库–my.conf tomcat–web服务器–server.xml 修改&#xff1a;连接数/端口 redis–缓存服务器–redis.conf 修改配置 jemeter–压测工具–jemeter.properties–修改…

tcp网络编程——2

1.一个服务器只能有一个客户端连接&#xff08;下面代码&#xff09; ​​​​​​​tcp网络编程&#xff08;基础&#xff09;-CSDN博客 2.一个服务器可以有多个客户端连接&#xff08;多线程&#xff09; server端创建多个线程&#xff0c;每个线程与不同的client端建立连…

【Camera Sensor Driver笔记】一、Sensor基本概念

时钟 sensor clock sensor的输入时钟 MCLK 输出时钟&#xff1a; 1. VTPixelClock&#xff1a;会影响sensor内部的帧率、曝光 VTPixelClock(vt_clk)Video Timing Clock, From sensor PLL VTPixelClock Framelengthlines x LinelengthPixelClock x FPS Framelengthlines L…

数据库主从复制

一、主从复制概述 1、介绍&#xff1a; 主从复制是指将主数据库的 DDL 和 DML 操作写入到二进制日志中&#xff0c;将二进制日志传送到从库服务器&#xff0c;然后在从库上对这些日志重新执行&#xff08;重做&#xff09;&#xff0c;从而使得从库和主库的数据保持同步。 M…

复合机器人在磁钢上下料中的应用及其优势分析

复合机器人是一种集成了移动机器人和工业机器人功能的设备&#xff0c;其独特之处在于拥有“手、脚、眼、脑”的综合能力&#xff0c;从而实现了更高的灵活性和操作效率。在磁钢上下料的应用场景中&#xff0c;复合机器人能够发挥显著的优势。 首先&#xff0c;复合机器人可以根…

chrome浏览器查看css样式

样式的查看 1.匹配器为灰色文本&#xff1a; 表示非当前选择器 2.样式有划线标识&#xff1a;CSS属性无效或未知 / 属性值无效 / 被其他属性覆盖的属性 3.属性以浅色文本显示且有感叹号提示&#xff1a;属性虽然有效&#xff0c;但由于CSS逻辑而没有任何影响 转自&#xff1a;…

判断完数(C语言)

一、N-S流程图&#xff1b; 二、运行结果&#xff1b; 三、源代码&#xff1b; # define _CRT_SECURE_NO_WARNINGS # include <stdio.h>int main() {//初始化变量值&#xff1b;int n 0;int i 1;int j 0;int result 1;//提示用户&#xff1b;printf("请输入一个…

Axure如何实现限制选择项数量的交互

大家经常会看到这样的功能设计&#xff1a;可以多选&#xff0c;但是限制多选。比如某招聘网站城市的选择只能选择5个。再选择第6个的时候会提示最多只能选择5项。 这个效果是我们经常会遇到的&#xff0c;在工作中也经常会遇到需要制作这样的效果。今天我们一起来看看&#xf…

Matlab无基础快速上手1(遗传算法框架)

本文用经典遗传算法框架模板&#xff0c;对matlab新手友好&#xff0c;快速上手看懂matlab代码&#xff0c;快速应用实践&#xff0c;源代码在文末给出。 基本原理&#xff1a; 遗传算法&#xff08;Genetic Algorithm&#xff0c;GA&#xff09;是一种受生物学启发的优化算法…

IDEA JAVA项目如何设置JVM参数

问题背景&#xff1a; 有时候项目在本地启动时会报参数引用不到&#xff0c;如果确实找不到在哪里添加的话&#xff0c;我们可以先加JVM参数来暂时解决本地环境的调试。 解决方案&#xff1a; 编辑配置Edit Configurations 选择需要配置的项目&#xff0c;点击Modify options 选…

FileNotFoundError: [Errno 2] No such file or directory: ‘llvm-config‘

查找本地的llvm-config find / -name llvm-config 2>/dev/null 输出 /usr/local/Cellar/llvm/17.0.6_1/bin/llvm-config 执行安装命令 LLVM_CONFIG/usr/local/Cellar/llvm/17.0.6_1/bin/llvm-config pip install llvmlite # 看自己路径在哪

男朋友花费了9万多,供我上大学,现在毕业1w多想分手,怎么办?

大家好&#xff0c;我是YUAN哥&#xff01;今天要跟大家聊聊一个热门话题——爱情与金钱的关系。最近看到一个网友的发帖&#xff0c;她说自己的男朋友供她上了四年大学&#xff0c;现在她找到了好工作&#xff0c;却想分手了。这个问题引起了网友们的热议。 在爱情中&#xff…

overflow(溢出)4个属性值,水平/垂直溢出,文字超出显示省略号的详解

你好&#xff0c;我是云桃桃。 一个希望帮助更多朋友快速入门 WEB 前端的程序媛。 云桃桃-大专生&#xff0c;一枚程序媛&#xff0c;感谢关注。回复 “前端基础题”&#xff0c;可免费获得前端基础 100 题汇总&#xff0c;回复 “前端工具”&#xff0c;可获取 Web 开发工具合…

基于SpringBoot+Vue钢材销售管理系统的设计与实现

系统介绍 为了更好地发挥本系统的技术优势&#xff0c;根据钢材销售管理系统的需求&#xff0c;本文尝试以B/S经典设计模式中的Spring Boot框架&#xff0c;JAVA语言为基础&#xff0c;通过必要的编码处理、钢材销售管理系统整体框架、功能服务多样化和有效性的高级经验和技术…

[数据结构与算法]-什么是二叉树?

二叉树是一种数据结构&#xff0c;由节点组成&#xff0c;每个节点最多有两个子节点&#xff0c;分别称为左子节点和右子节点。二叉树的每个节点包含一个值&#xff0c;并且左子节点的值小于等于父节点的值&#xff0c;右子节点的值大于等于父节点的值。这个性质使得二叉树在搜…

论文辅助笔记:处理geolife数据

论文笔记&#xff1a;Context-aware multi-head self-attentional neural network model fornext location prediction-CSDN博客 对应命令行里 python preprocessing/geolife.py 20 这一句 1 读取geolife数据 pfs, _ read_geolife(config["raw_geolife"], print_…

文本生成任务的评价方法BLEU 和 ROUGE

BLEU 是 2002 年提出的&#xff0c;而 ROUGE 是 2003 年提出的。这两种指标虽然存在着一些问题&#xff0c;但是仍然是比较主流的评价指标。 BLUE BLEU 的全称是 Bilingual evaluation understudy&#xff0c;BLEU 的分数取值范围是 0&#xff5e;1&#xff0c;分数越接近1&a…