【融合ChatGPT等AI模型】Python-GEE遥感云大数据分析、管理与可视化及多领域应用

news2024/11/13 9:06:48

随着航空、航天、近地空间遥感平台的持续发展,遥感技术近年来取得显著进步。遥感数据的空间、时间、光谱分辨率及数据量均大幅提升,呈现出大数据特征。这为相关研究带来了新机遇,但同时也带来巨大挑战。传统的工作站和服务器已无法满足大区域、多尺度海量遥感数据处理需求。

为解决此问题,全球涌现出多个地球科学数据在线可视化计算和分析云平台,如谷歌Earth Engine(GEE)、航天宏图PIE Engine和阿里AI Earth等。其中,Earth Engine功能最为强大,能存取和同步MODIS、Landsat、Sentinel等卫星影像及NCEP等气象再分析数据集,并依托全球上百万台超级服务器提供强大运算能力。目前,该平台包含1000余个公共数据集,每月新增约2 PB数据,总容量超过100PB。与传统的处理影像工具(例如ENVI)相比,Earth Engine在处理海量遥感数据方面具有显著优势,提供了丰富的计算资源和巨大的云存储能力,节省大量数据下载和预处理时间。它代表了遥感数据计算、分析和可视化领域的世界前沿水平,堪称遥感领域的革命性进展。

如今,Earth Engine正受到越来越多科技工作者的关注,应用范围日益扩大。本课程指在帮助科研工作者掌握Earth Engine的实际应用能力,以Python为基础,结合实例讲解平台搭建、影像数据分析、经典应用案例、本地与云端数据管理,以及云端数据论文出版级可视化等技能。

第一章、理论基础

1、Earth Engine平台及应用、主要数据资源介绍

2、Earth Engine遥感云重要概念、数据类型与对象等

3、JavaScript与Python遥感云编程比较与选择

4、Python基础(语法、数据类型与程序控制结构、函数及类与对象等)

5、常用Python软件包((pandas、numpy、os等)介绍及基本功能演示(Excel/csv数据文件读取与数据处理、目录操作等)

6、JavaScript和Python遥感云API差异,学习方法及资源推荐

7、ChatGPT、文心一言等AI自然语言模型介绍及其遥感领域中的应用

第二章、开发环境搭建

1、本地端与云端Python遥感云开发环境介绍

2、本地端开发环境搭建

1)Anaconda安装,pip/conda软件包安装方法和虚拟环境创建等;

2)earthengine-api、geemap等必备软件包安装;

3)遥感云本地端授权管理;

4)Jupyter Notebook/Visual Studio Code安装及运行调试。 

3、云端Colab开发环境搭建

4、geemap介绍及常用功能演示

5、ChatGPT、文心一言帐号申请与主要功能演示,如遥感知识解答、数据分析处理代码生成、方案框架咨询等。

第三章、遥感大数据处理基础与AI大模型交互

1、遥感云平台影像数据分析处理流程介绍:介绍遥感云平台影像数据分析处理流程的基本框架,包括数据获取、数据预处理、算法开发、可视化等。

2、要素和影像等对象显示和属性字段探索:介绍如何在遥感云平台上显示和探索要素和影像等对象的属性字段,包括如何选择要素和影像对象、查看属性信息、筛选数据等。

3、影像/要素集的时间、空间和属性过滤方法:介绍如何对影像/要素集进行时间、空间和属性过滤,包括如何选择时间段、地理区域和属性条件,以实现更精确的数据分析。

4、波段运算、条件运算、植被指数计算、裁剪和镶嵌等:介绍如何在遥感云平台上进行波段运算、条件运算、植被指数计算、裁剪和镶嵌等操作,以实现更深入的数据分析。

5、Landsat/Sentinel-2等常用光学影像去云:介绍如何在遥感云平台上使用不同方法去除Landsat/Sentinel-2等常用光学影像中的云,以提高影像数据质量。

6、影像与要素集的迭代循环:介绍如何使用遥感云平台的迭代循环功能对影像和要素集进行批量处理,以提高数据分析效率。

7、影像数据整合(Reducer):介绍如何使用遥感云平台的Reducer功能将多个影像数据整合成一个数据集,以方便后续数据分析。

8、邻域分析与空间统计:介绍如何在遥感云平台上进行邻域分析和空间统计,以获取更深入的空间信息。

9、常见错误与代码优化:介绍遥感云平台数据分析过程中常见的错误和如何进行代码优化,以提高数据分析效率和精度。

10、Python遥感云数据分析专属包构建:介绍如何使用Python在遥感云平台上构建数据分析专属包,以方便多次使用和分享分析代码。

第四章、典型案例操作实践与AI大模型交互

11、机器学习分类算法案例:本案例联合Landsat等长时间序列影像和机器学习算法展示国家尺度的基本遥感分类过程。具体内容包括研究区影像统计、空间分层随机抽样、样本随机切分、时间序列影像预处理和合成、机器学习算法应用、分类后处理和精度评估等方面。

12、决策树森林分类算法案例:本案例联合L波段雷达和Landsat光学时间序列影像,使用决策树分类算法提取指定地区2007-2020年度森林分布图,并与JAXA年度森林产品进行空间比较。案例涉及多源数据联合使用、决策树分类算法构建、阈值动态优化、分类结果空间分析等方面。

13、洪涝灾害监测案例:本案例基于Sentinel-1 C波段雷达等影像,对省级尺度的特大暴雨灾害进行监测。案例内容包括Sentinel-1 C影像处理、多种水体识别算法构建、影像差异分析以及结果可视化等方面。。

14、干旱遥感监测案例:本案例使用40年历史的卫星遥感降雨数据产品如CHIRPS来监测省级尺度的特大干旱情况。案例内容包括气象数据基本处理、年和月尺度数据整合、长期平均值LPA/偏差计算,以及数据结果可视化等方面。

15、物候特征分析案例:本案例基于Landsat和MODIS等时间序列影像,通过植被指数变化分析典型地表植被多年的物候差异(样点尺度)和大尺度(如中国)的物候空间变化特征。案例内容包括时间序列影像合成、影像平滑(Smoothing)与间隙填充(Gap-filling)、结果可视化等方面。

16、森林植被健康状态监测案例:本案例利用20年的MODIS植被指数,对选定区域的森林进行长期监测,并分析森林植被的绿化或褐变情况。涉及影像的连接和合成、趋势分析、空间统计以及可视化等方法。

17、生态环境质量动态监测案例:该案例使用RSEI遥感生态指数和Landsat系列影像,对选定城市的生态状况进行快速监测。主要涉及的技术包括植被指数的计算、地表温度的提取、数据的归一化、主成分PCA分析、RSEI生态指数的构建以及结果的可视化等。

第五章、输入输出及数据资产高效管理与AI大模型交互

1. 本地数据与云端交互:介绍如何将本地端csv、kml、矢量和栅格数据与云端数据相互转换,并讲解数据导出的方法。

2. 服务器端数据批量下载:包括直接本地下载、影像集批量下载,以及如何快速下载大尺度和长时间序列数据产品,例如全球森林产品和20年的MODIS数据产品等。。

3. 本地端数据上传与属性设置:包括earthengine命令使用,介绍如何上传少量本地端矢量与栅格数据并设置属性(小文件),以及如何批量上传数据并自动设置属性,还将介绍如何使用快速上传技巧上传超大影像文件,例如国产高分影像。

4、个人数据资产管理:介绍如何使用Python和earthengine命令行来管理个人数据资产,包括创建、删除、移动、重命名等操作,同时还会讲解如何批量取消上传/下载任务。

第六章、云端数据论文出版级可视化与AI大模型交互

1. Python可视化及主要软件包简介:介绍matplotlib和seaborn可视化程序包,讲解基本图形概念、图形构成以及快速绘制常用图形等内容。

2. 研究区地形及样地分布图绘制:结合本地或云端矢量文件、云端地形数据等,绘制研究区示意图。涉及绘图流程、中文显示、配色美化等内容,还会介绍cpt-city精美调色板palette在线下载与本地端应用等。

3. 研究区域影像覆盖统计和绘图:对指定区域的Landsat和Sentinel等系列影像的覆盖数量、无云影像覆盖情况进行统计,绘制区域影像统计图或像元级无云影像覆盖专题图。

4. 样本光谱特征与物候特征等分析绘图:快速绘制不同类型样地的光谱和物候特征,动态下载并整合样点过去30年缩略图(thumbnails)和植被指数时间序列等。

5. 分类结果专题图绘制及时空动态延时摄影Timelapse制作:单幅或多幅分类专题图绘制及配色美化,制作土地利用变化清晰的Timelapse,还会介绍动画文字添加等内容。

6、分类结果面积统计与绘图:基于云端的分类结果和矢量边界文件,统计不同区域不同地类面积,提取统计结果,以不同图形展示统计面积;制作土地利用变化统计绘图等。

第七章、AI大模型与科研辅助经验分享

1、文献总结:本部分将演示AI如何帮助研究人员高效提取文献要点,包括快速识别关键变量、研究方法和主要发现,旨在提升文献审阅的效率和质量。

2、文献查找:学习如何利用AI工具从海量数据中筛选和推荐与研究议题相关的论文,从而加速文献回顾的过程并确保研究的全面性。

3、框架生成:本节将指导如何运用AI工具构建科研论文的大纲框架,并提供结构和逻辑的修改建议,以加强论文的条理性和说服力。

4、图表生文:介绍AI如何辅助解读复杂的科研数据和图表,并将这些信息融入论文撰写中,增强论文的数据支撑力和论证的准确性。

5、中译英提升:探讨AI翻译工具如何帮助研究者将中文科研材料准确、流畅地转换为英文,满足国际学术交流的需求。

6、中英文润色:通过AI工具优化中文和英文论文的语言表达和学术措辞,提升论文的整体质量,使其更符合专业的学术标准和出版要求。

图片

图片

图片

图片

 

图片

原文链接icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzUyNzczMTI4Mg==&mid=2247685033&idx=1&sn=9038e7da27e2e9133c21cb8b197b160b&chksm=fa774c94cd00c5820553906839ed1b33e739d530b951d72e547f00aa2565d00ac1c85f4c43b5&token=1169546755&lang=zh_CN#rd

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1612923.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

anaconda配置的环境对应的地址查看,环境安装位置

打开conda指令窗口 这个和上面的都一样,哪个都行 点开后,输入 conda env list 这里显示的就是自己的每个环境对应的地址了

python_4

def reverse(number):a str(number) # 将输入的数字转成字符串print(f"反向输出:{a[::-1]}") # 将字符串通过切片反向输出number int(input("输入整数:")) reverse(number)import mathdef isValid(side1, side2, side3):# 根据"两边之和大于第三边…

安装mmsegmentation默认主分支main

安装时间2024.4.21 mmsegmentation新版本main分支(v1.2.2) 安装过程 conda create --name openmmlab python3.8 -y conda activate openmmlab// 很关键,可以避免mmcv版本问题 pip install torch1.10.1cu113 torchvision0.11.2cu113 torcha…

明日周刊-第7期

转眼间就又快到了五一假期,小长假有什么计划吗。封面配图是杭州高架上的月季花,非常好看。 文章目录 一周热点资源分享言论歌曲推荐 一周热点 鸿蒙系统持续扩大影响力:近期,华为官方宣布广东省已有超过600款应用加入鸿蒙系统&…

文献速递:深度学习胶质瘤诊断---使用深度学习在 MRI 图像中进行低级别胶质瘤的脑肿瘤分割和分级

Title 题目 Brain tumor segmentation and grading of lower-grade glioma using deeplearning in MRI images 使用深度学习在 MRI 图像中进行低级别胶质瘤的脑肿瘤分割和分级 01文献速递介绍 胶质瘤是最常见的脑肿瘤,根据肿瘤的恶性程度和生长速率具有不同的分级…

如何在PostgreSQL中使用pg_stat_statements插件进行SQL性能统计和分析?

文章目录 一、启用pg_stat_statements插件二、查看统计信息三、定期重置统计信息四、注意事项 PostgreSQL中的pg_stat_statements是一个强大的插件,用于追踪执行时间最长的SQL语句。通过它,我们可以获取有关SQL语句执行频率、总执行时间、平均执行时间等…

2024团体程序设计天梯赛L1-104 九宫格

题目链接L1-104 九宫格 #include<iostream> #include<stdio.h> #include<string.h> #include<algorithm> using namespace std; int n, mapp[10][10], a[10]; int dx[10]{0, 1, 1, 1, 4, 4, 4, 7, 7, 7}; int dy[10]{0, 1, 4, 7, 1, 4, 7, 1, 4, 7}; b…

HTML:Form表单控件主要标签及属性。name属性,value属性,id属性详解。表单内容的传递流程,get和post数据传递样式。表单数据传递实例

form表单 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title> </head> &…

前端项目的导入和启动

安装依赖 前端安装依赖只需要在控制台执行“npm i”即可。Tips&#xff1a;当我们执行的时候&#xff0c;有时候会很慢。可以考虑使用yarn或者pnpm。然而使用yarn或者pnpm有时候有一些莫名其妙的问题。所以还是得使用npm&#xff0c; 这个时候可以通过更换镜像源为淘宝镜像源。…

递归排列枚举(c++)

全部排列问题 输入 n 输出 1…n 个数的全部排列。全部排列中&#xff0c;数字可以重复 。 例如 输入 3 输出全部排列的结果如下&#xff1a;111、112、113、121、122、123、131、132、133、211、212、213、221、222、223、231、232、233、311、312、313、321、322、323、33…

红外接收器的原理以及在STM32和51单片机中的应用

基本介绍&#xff1a; 红外接收器是一种用于接收红外线信号的装置&#xff0c;常见于各种电子设备中&#xff0c;如电视遥控器、空调遥控器等。它能够接收来自发射器发送的红外信号&#xff0c;并将其转换成电信号&#xff0c;以便设备进行相应的操作。红外接收器通常包含红外光…

C语言语法进阶

条件运算符 条件运算符是 C 语言中唯一的一种三目运算符。三目运算符代表有三个操作数&#xff1b;双目 运算符代表有两个操作数&#xff0c;如逻辑与运算符就是双目运算符&#xff1b;单目运算符代表有一个操作数&#xff0c; 如逻辑非运算符就是单目运算符。运算符也称操作符…

亚马逊---设计安全架构

会从以下三个方面展开&#xff1a; 1、AWS资源访问安全 2、应用程序负载的网络安全 3、云中数据的安全 责任共担模式 就像租房子&#xff08;房东和你的责任&#xff09; AWS资源访问安全 需要掌握以下几点&#xff1a; 1、跨多个账户的访问控制和管理 2、AWS联合访问和身份服…

探索RadSystems:低代码开发的新选择(一)

文章目录 前言一、名词解释1、低代码开发是什么&#xff1f;2、RadSystems Studio是什么&#xff1f; 二、操作步骤1.下载安装2.启动项目 总结 前言 在数字化时代&#xff0c;低代码开发平台成为越来越多企业的首选&#xff0c;因为它们可以大大加速应用程序的开发过程&#x…

ssm068海鲜自助餐厅系统+vue

海鲜自助餐厅系统的设计与实现 摘 要 网络技术和计算机技术发展至今&#xff0c;已经拥有了深厚的理论基础&#xff0c;并在现实中进行了充分运用&#xff0c;尤其是基于计算机运行的软件更是受到各界的关注。加上现在人们已经步入信息时代&#xff0c;所以对于信息的宣传和管…

医学图像分割入门-FCN理论与实践

FCN&#xff08;全卷积神经网络&#xff09; 引言 全卷积网络&#xff08;Fully Convolutional Network&#xff0c;简称FCN&#xff09;是一种深度学习模型&#xff0c;专门设计用于图像分割任务。相比于传统的基于全连接层的神经网络&#xff0c;FCN可以接受任意尺寸的输入…

Llama 3 实测效果炸裂,一秒写数百字(附镜像站)

这几天大火的llama 3刚刚在https://askmanyai.cn上线了&#xff01; 玩了一会儿&#xff0c;这个生成速度是真的亚麻呆住。文案写作和代码生成直接爽到起飞&#xff0c;以往gpt要写一两分钟的千字文&#xff0c;llama 3几秒钟就写完了。而且效果甚至感觉更好&#xff1f; 效果惊…

前端表单input的简单使用

1.代码结构介绍 2.实战效果

GARTNER纵横四海 – 2023年LCAP魔力象限图(Magic Quadrant)上各上榜者优势和注意事项

低代码应用平台&#xff08;LCAP-low code application platform&#xff09;通过抽象通用可重复使用软件组件的编码&#xff0c;并将开发人员的工作分配给更接近业务成果的任务&#xff0c;来加速应用程序开发。利用这项研究来比较和对比全球LCAP市场上的上榜企业。 一、市场…

Vitis HLS 学习笔记--HLS优化指令示例-目录

目录 1. 示例集合概述 2. 内容分析 2.1 array_partition 2.2 bind_op_storage 2.3 burst_rw 2.4 critical_path 2.5 custom_datatype 2.6 dataflow_stream 2.7 dataflow_stream_array 2.8 dependence_inter 2.9 gmem_2banks 2.10 kernel_chain 2.11 lmem_2rw 2.1…