【深度学习实战(10)】图像推理之预处理

news2024/11/17 21:27:26

一、预处理流程

在把一张图像送入模型进行推理时,需要先进行预处理,预处理流程包括:
(1)读取图像
(2)尺寸调整,letter_box(不失真)
(3)通道调整:HWC->CHW
(4)格式调整: array -> tensor
(5)维度调整:CHW -> BCHW
(6)设备调整:to device

二、代码

import torch
import cv2
import numpy as np
from torchvision import transforms


# -------------------------------------------------------------------#
#   letterbox:图片缩放,居中对齐,左右或者上下填充,通过仿射变换实现
# -------------------------------------------------------------------#
def letter_box(image, input_w=640, input_h=640):
    scale = min(input_h / image.shape[0], input_w / image.shape[1])
    ox = (-scale * image.shape[1] + input_w + scale  - 1) * 0.5
    oy = (-scale * image.shape[0] + input_h + scale  - 1) * 0.5
    M = np.array([
        [scale, 0, ox],
        [0, scale, oy]
    ], dtype=np.float32)
    IM = cv2.invertAffineTransform(M)
    image_prep = cv2.warpAffine(image, M, (input_w, input_h), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=(114, 114, 114))
    return image_prep, M, IM

#------------------#
#   preprocess
#------------------#
def preprocess(image, input_size, device):
    # ------------------#
    #   HWC->CHW
    #   array -> tensor
    #   CHW -> BCHW
    #   to device
    # ------------------#
    return torch.unsqueeze(transforms.ToTensor()(image), 0).to(device)



if __name__ == "__main__":

    device = 'cpu'
    model_input_size = [320, 320]
    

    # -----------------#
    #   read image
    # -----------------#
    image=cv2.imread('demo.png')
    cv2.imshow('orginal', image)

    # -----------------#
    #   letter_box
    # -----------------#
    M = None
    IM = None
    ltbox = (image.shape[0] != model_input_size[0] or image.shape[1] != model_input_size[1])
    if ltbox:
        image, M, IM=letter_box(image, 320, 320)
        cv2.imshow('ltbox', image)
        cv2.waitKey(0)

    # -----------------#
    #   preprocess
    # -----------------#
    image_in = preprocess(image, model_input_size, device)

二、代码逐行debug调试

运行letter_box后
在这里插入图片描述
运行preprocess后
在这里插入图片描述
我们看看ToTensor对图像做了什么?
ToTensor之前:
在这里插入图片描述
类型:ndarray
通道:HWC
数值:[114,114,114] 未归一化
ToTensor之后:
在这里插入图片描述

类型:Tensor
通道:CHW
数值:[0.4471,0.4471,0.4471] 归一化 0.4471=114/256

通过debug,我们可以发现transforms.ToTensor()一共对图片做了三件事,分别是类型转换通道调整归一化

查阅资料,确认一下
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1610713.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MATLAB绘制圆锥曲线:抛物线,双曲线,椭圆

MATLAB绘制圆锥曲线:抛物线,双曲线,椭圆 clc;close all;clear all;warning off;%清除变量x linspace(-10, 10, 1000); % 创建一个x值的向量,范围从-10到10,共1000个点 y x.^2; % 计算每个x值对应的y值% 使用plot函数绘制图形 figure; % 创建一个新的图…

排序 “壹” 之插入排序

目录 ​编辑 一、排序的概念 1、排序: 2、稳定性: 3、内部排序: 4、外部排序: 二、排序的运用 三、插入排序算法实现 3.1 基本思想 3.2 直接插入排序 3.2.1 排序过程: 3.2.2 代码示例: 3.2.3…

使用Spring进行文件的上传和下载

概览 使用Spring进行文件的上传和下载Spring上传文件接口设计dubbo接口设计上传文件流的RPC的接口设计 Spring文件下载接口设计dubbo接口设计下载文件流的RPC的接口设计 spring上传文件大小控制 使用Spring进行文件的上传和下载 本文主要介绍在Spring框架下面调用微服务的dubb…

YOLOv9改进策略 | 添加注意力篇 | 利用ILSVRC冠军得主SENetV1改善网络模型特征提取能力

一、本文介绍 本文给大家带来的改进机制是SENet(Squeeze-and-Excitation Networks)其是一种通过调整卷积网络中的通道关系来提升性能的网络结构。SENet并不是一个独立的网络模型,而是一个可以和现有的任何一个模型相结合的模块(可以看作是一…

项目实践:贪吃蛇

引言 贪吃蛇作为一项经典的游戏,想必大家应该玩过。贪吃蛇所涉及的知识也不是很难,涉及到一些C语言函数、枚举、结构体、动态内存管理、预处理指令、链表、Win32 API等。这里我会介绍贪吃蛇的一些思路。以及源代码也会给大家放到文章末尾。 我们最终的…

【Ne4j图数据库入门笔记1】图形数据建模初识

1.1 图形建模指南 图形数据建模是用户将任意域描述为节点的连接图以及与属性和标签关系的过程。Neo4j 图数据模型旨在以 Cypher 查询的形式回答问题,并通过组织图数据库的数据结构来解决业务和技术问题。 1.1.1 图形数据模型介绍 图形数据模型通常被称为对白板友…

【Gradle如何安装配置及使用的教程】

🎥博主:程序员不想YY啊 💫CSDN优质创作者,CSDN实力新星,CSDN博客专家 🤗点赞🎈收藏⭐再看💫养成习惯 ✨希望本文对您有所裨益,如有不足之处,欢迎在评论区提出…

双链表的实现

我们知道链表其实有很多种,什么带头,什么双向啊,我们今天来介绍双向带头循环链表,了解了这个其他种类的链表就很简单了。冲冲冲!!! 链表的简单分类 链表有很多种,什么带头循环链表&…

tcp-learner 数据包分析 20240420

输入输出: 数据包分析: learner和Adapter建立连接。 Learner让Adapter发送RST Adapter没有从SUT抓到任何回复,于是向learner发送timeout learner给adapter发送reset命令,让SUT重置。 这是第一次初始化,由于Adapter和…

Spring Boot后端与Vue前端融合:构建高效旅游管理系统

作者介绍:✌️大厂全栈码农|毕设实战开发,专注于大学生项目实战开发、讲解和毕业答疑辅导。 🍅获取源码联系方式请查看文末🍅 推荐订阅精彩专栏 👇🏻 避免错过下次更新 Springboot项目精选实战案例 更多项目…

【简单讲解下npm常用命令】

🌈个人主页: 程序员不想敲代码啊 🏆CSDN优质创作者,CSDN实力新星,CSDN博客专家 👍点赞⭐评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共…

【hackmyVM】whitedoor靶机

文章目录 信息收集1.IP地址2.端口探测nmapftp服务 3.访问主页 漏洞利用1.反弹shell2.尝试提权3.base64解密 提权1.切换用户2.john爆破3.切换Gonzalo用户4.vim提权 信息收集 1.IP地址 ┌─[✗]─[userparrot]─[~] └──╼ $fping -ag 192.168.9.0/24 2> /dev/null192.168…

ZYNQ NVME高速存储之EXT4文件系统

前面文章分析了高速存储的各种方案,目前主流的三种存储方案是,pcie switch高速存储方案,zynq高速存储方案,fpga高速存储方案。虽然三种高速存储方案都可以实现高速存储,但是fpga高速存储方案是最烂的,fpga…

Android Studio 新建Android13 代码提示Build Tools revision XX is corrupted无法编译解决

Android Studio 新建Android13 代码提示Build Tools revision XX is corrupted无法编译解决 文章目录 Android Studio 新建Android13 代码提示Build Tools revision XX is corrupted无法编译解决一、前言二、分析解决1、原因分析2、解决方法 三、其他1、Android13 新项目无法编…

什么是时间序列分析

时间序列分析是现代计量经济学的重要内容,广泛应用于经济、商业、社会问题研究中,在指标预测中具有重要地位,是研究统计指标动态特征和周期特征及相关关系的重要方法。 一、基本概念 经济社会现象随着时间的推移留下运行轨迹,按…

随身WiFi真实测评推荐!格行vs新讯随身wifi对比,公认最好的随身WiFi格行随身wifi有什么优势?

在当前移动网络高度发达的时代,随身 WiFi 已成为人们出差、旅行等场景中不可或缺的工具。格行和新讯是目前比较受欢迎的无线随身wifi。本次评测将对比分析这两款产品的区别,做为随身WiFi推荐第一名的格行随身wifi到底有什么优势呢? 品牌对比&…

[阅读笔记15][Orca]Progressive Learning from Complex Explanation Traces of GPT-4

接下来是微软的Orca这篇论文,23年6月挂到了arxiv上。 目前利用大模型输出来训练小模型的研究都是在模仿,它们倾向于学习大模型的风格而不是它们的推理过程,这导致这些小模型的质量不高。Orca是一个有13B参数的小模型,它可以学习到…

C++ 内存分区管理

一、栈区(Stack) 栈区用来存储函数的参数值、局部变量的值等数据。栈区是自动分配和释放的,函数执行时会在栈区分配空间,函数执行结束时会自动释放这些空间。栈区的数据是连续分配的,由系统自动管理。 注意事项&…

layui框架实战案例(27):弹出二次验证

HTML容器 <button class"layui-btn layui-btn-sm layui-btn-danger" lay-event"delete"><i class"layui-icon layui-icon-delete"></i>批量删除</button>删除封装函数 function delAll(school_id, school_name) {var lo…

牛x之路 - Day1

Day1 微积分之屠龙宝刀&#xff08;武林秘籍&#xff09; 之前的一些东西都在pdf上记得笔记&#xff0c; 没有在这个上面展示一遍&#xff0c;只好学到相关内容的时候再提叙啦&#xff1b;所以其实再写这个小记的时候&#xff0c;我已经看了一半的书&#xff0c;但是不要紧&am…