对比实验系列:Efficientdet环境配置及训练个人数据集

news2024/11/24 5:09:17

一、源码下载

可以通过下方链接下载Efficientdet源码

GitHub - zylo117/Yet-Another-EfficientDet-Pytorch: The pytorch re-implement of the official efficientdet with SOTA performance in real time and pretrained weights.The pytorch re-implement of the official efficientdet with SOTA performance in real time and pretrained weights. - zylo117/Yet-Another-EfficientDet-Pytorchicon-default.png?t=N7T8https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch/tree/master

二、环境配置

1、使用anaconda创建环境

conda create -n efficient python==3.8 -y

2、进入环境

conda activate efficient

3、安装依赖包

pip install pycocotools-windows numpy opencv-python tqdm tensorboard tensorboardX pyyaml webcolors

4、安装torch和torchvision

pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 -f https://download.pytorch.org/whl/torch_stable.html

5、测试配置

5.1预训练权重下载

在源码下载的地方将预训练权重下载下来,这里选择的是Efficientdet-D1版本的预训练权重

在根目录下创建weights文件夹,将预训练权重放在文件夹内

5.2修改参数

在efficientdet_test.py中修改测试图片路径和efficientdet的版本,这里我下的版本是D1,所以就要将compound_coef改为1,如果你下的是其他版本,就将compound_coef改成对应的版本数字。

测试图片官方已经放在test\img.png,修改完之后运行efficientdet_test.py,检测结果保存在test文件夹内。

至此,efficientdet的所有环境配置结束。

三、自己的数据集制作

由于efficientdet使用的是coco格式的数据集,需要将标签转为coco格式,如果使用labelme进行标注,可以直接在labelme中切换成json格式的标签,最后用脚本进行合并,本文介绍的是使用VOC格式(xml)如何转为coco格式数据集。

1、划分验证集和训练集

使用下面的脚本将训练集进行划分:

# 将标签格式为xml的数据集按照8:2的比例划分为训练集和验证集

import os
import shutil
import random
from tqdm import tqdm


def split_img(img_path, label_path, split_list):
    try:  # 创建数据集文件夹
        Data = 'yourdatasetsname'
        os.mkdir(Data)

        train_img_dir = Data + '/images/train'
        val_img_dir = Data + '/images/val'
        # test_img_dir = Data + '/images/test'

        train_label_dir = Data + '/labels/train'
        val_label_dir = Data + '/labels/val'
        # test_label_dir = Data + '/labels/test'

        # 创建文件夹
        os.makedirs(train_img_dir)
        os.makedirs(train_label_dir)
        os.makedirs(val_img_dir)
        os.makedirs(val_label_dir)
        # os.makedirs(test_img_dir)
        # os.makedirs(test_label_dir)

    except:
        print('文件目录已存在')

    train, val = split_list
    all_img = os.listdir(img_path)
    all_img_path = [os.path.join(img_path, img) for img in all_img]
    # all_label = os.listdir(label_path)
    # all_label_path = [os.path.join(label_path, label) for label in all_label]
    train_img = random.sample(all_img_path, int(train * len(all_img_path)))
    train_img_copy = [os.path.join(train_img_dir, img.split('\\')[-1]) for img in train_img]
    train_label = [toLabelPath(img, label_path) for img in train_img]
    train_label_copy = [os.path.join(train_label_dir, label.split('\\')[-1]) for label in train_label]
    for i in tqdm(range(len(train_img)), desc='train2007 ', ncols=80, unit='img'):
        _copy(train_img[i], train_img_dir)
        _copy(train_label[i], train_label_dir)
        all_img_path.remove(train_img[i])
    val_img = all_img_path
    val_label = [toLabelPath(img, label_path) for img in val_img]
    for i in tqdm(range(len(val_img)), desc='test2007 ', ncols=80, unit='img'):
        _copy(val_img[i], val_img_dir)
        _copy(val_label[i], val_label_dir)


def _copy(from_path, to_path):
    shutil.copy(from_path, to_path)


def toLabelPath(img_path, label_path):
    img = img_path.split('\\')[-1]
    label = img.split('.jpg')[0] + '.xml'
    return os.path.join(label_path, label)


def main():
    img_path = '/path/to/your/image/folder'
    label_path = '/path/to/your/xml/folder'
    split_list = [0.8, 0.2]  # 数据集划分比例[train2007:test2007]
    split_img(img_path, label_path, split_list)


if __name__ == '__main__':
    main()

2、移动图片

在数据集根目录下创建datasets文件夹,并创建coco文件夹,在coco文件夹内创建annotations、train2017和val2017文件夹。将上一步划分好的训练集图片放入trian2017文件夹内,验证集图片放入val2017文件夹内。

3、生成json文件

使用下方的脚本分别对验证集和训练集的所有xml文件转为json文件,结果会生成两个json文件。

import xml.etree.ElementTree as ET
import os
import json

coco = dict()
coco['images'] = []
coco['type'] = 'instances'
coco['annotations'] = []
coco['categories'] = []

category_set = dict()
image_set = set()

# category_item_id = -1
# VOC数据集的类别id与coco数据集一样都是从1开始,如果初始设为-1,那么转出来的coco的json文件中category_id和类别id会从0开始,不符合coco标准,在调coco.py的时候会报错list越界
category_item_id = 0
image_id = 20180000000
annotation_id = 0

def addCatItem(name):
    global category_item_id
    category_item = dict()
    category_item['supercategory'] = 'none'
    category_item_id += 1
    category_item['id'] = category_item_id
    category_item['name'] = name
    coco['categories'].append(category_item)
    category_set[name] = category_item_id
    return category_item_id

def addImgItem(file_name, size):
    global image_id
    if file_name is None:
        raise Exception('Could not find filename tag in xml file.')
    if size['width'] is None:
        raise Exception('Could not find width tag in xml file.')
    if size['height'] is None:
        raise Exception('Could not find height tag in xml file.')
    image_id += 1
    image_item = dict()
    image_item['id'] = image_id
    image_item['file_name'] = file_name
    image_item['width'] = size['width']
    image_item['height'] = size['height']
    coco['images'].append(image_item)
    image_set.add(file_name)
    return image_id

def addAnnoItem(object_name, image_id, category_id, bbox):
    global annotation_id
    annotation_item = dict()
    annotation_item['segmentation'] = []
    seg = []
    # bbox[] is x,y,w,h
    # left_top
    seg.append(bbox[0])
    seg.append(bbox[1])
    # left_bottom
    seg.append(bbox[0])
    seg.append(bbox[1] + bbox[3])
    # right_bottom
    seg.append(bbox[0] + bbox[2])
    seg.append(bbox[1] + bbox[3])
    # right_top
    seg.append(bbox[0] + bbox[2])
    seg.append(bbox[1])

    annotation_item['segmentation'].append(seg)

    annotation_item['area'] = bbox[2] * bbox[3]
    annotation_item['iscrowd'] = 0
    annotation_item['ignore'] = 0
    annotation_item['image_id'] = image_id
    annotation_item['bbox'] = bbox
    annotation_item['category_id'] = category_id
    annotation_id += 1
    annotation_item['id'] = annotation_id
    coco['annotations'].append(annotation_item)

def _read_image_ids(image_sets_file):
    ids = []
    with open(image_sets_file) as f:
        for line in f:
            ids.append(line.rstrip())
    return ids

"""通过txt文件生成"""
#split ='train' 'va' 'trainval' 'test'
def parseXmlFiles_by_txt(data_dir,json_save_path,split='train'):
    print("hello")
    labelfile=split+".txt"
    image_sets_file = data_dir + "/ImageSets/Main/"+labelfile
    ids=_read_image_ids(image_sets_file)

    for _id in ids:
        xml_file=data_dir + f"/Annotations/{_id}.xml"

        bndbox = dict()
        size = dict()
        current_image_id = None
        current_category_id = None
        file_name = None
        size['width'] = None
        size['height'] = None
        size['depth'] = None

        tree = ET.parse(xml_file)
        root = tree.getroot()
        if root.tag != 'annotation':
            raise Exception('pascal voc xml root element should be annotation, rather than {}'.format(root.tag))

        # elem is <folder>, <filename>, <size>, <object>
        for elem in root:
            current_parent = elem.tag
            current_sub = None
            object_name = None

            if elem.tag == 'folder':
                continue

            if elem.tag == 'filename':
                file_name = elem.text
                if file_name in category_set:
                    raise Exception('file_name duplicated')

            # add img item only after parse <size> tag
            elif current_image_id is None and file_name is not None and size['width'] is not None:
                if file_name not in image_set:
                    current_image_id = addImgItem(file_name, size)
                    print('add image with {} and {}'.format(file_name, size))
                else:
                    raise Exception('duplicated image: {}'.format(file_name))
                    # subelem is <width>, <height>, <depth>, <name>, <bndbox>
            for subelem in elem:
                bndbox['xmin'] = None
                bndbox['xmax'] = None
                bndbox['ymin'] = None
                bndbox['ymax'] = None

                current_sub = subelem.tag
                if current_parent == 'object' and subelem.tag == 'name':
                    object_name = subelem.text
                    if object_name not in category_set:
                        current_category_id = addCatItem(object_name)
                    else:
                        current_category_id = category_set[object_name]

                elif current_parent == 'size':
                    if size[subelem.tag] is not None:
                        raise Exception('xml structure broken at size tag.')
                    size[subelem.tag] = int(subelem.text)

                # option is <xmin>, <ymin>, <xmax>, <ymax>, when subelem is <bndbox>
                for option in subelem:
                    if current_sub == 'bndbox':
                        if bndbox[option.tag] is not None:
                            raise Exception('xml structure corrupted at bndbox tag.')
                        bndbox[option.tag] = int(option.text)

                # only after parse the <object> tag
                if bndbox['xmin'] is not None:
                    if object_name is None:
                        raise Exception('xml structure broken at bndbox tag')
                    if current_image_id is None:
                        raise Exception('xml structure broken at bndbox tag')
                    if current_category_id is None:
                        raise Exception('xml structure broken at bndbox tag')
                    bbox = []
                    # x
                    bbox.append(bndbox['xmin'])
                    # y
                    bbox.append(bndbox['ymin'])
                    # w
                    bbox.append(bndbox['xmax'] - bndbox['xmin'])
                    # h
                    bbox.append(bndbox['ymax'] - bndbox['ymin'])
                    print('add annotation with {},{},{},{}'.format(object_name, current_image_id, current_category_id,
                                                                   bbox))
                    addAnnoItem(object_name, current_image_id, current_category_id, bbox)
    json.dump(coco, open(json_save_path, 'w'))

"""直接从xml文件夹中生成"""
def parseXmlFiles(xml_path,json_save_path):
    for f in os.listdir(xml_path):
        if not f.endswith('.xml'):
            continue

        # print(path)

        bndbox = dict()
        size = dict()
        current_image_id = None
        current_category_id = None
        file_name = None
        size['width'] = None
        size['height'] = None
        size['depth'] = None

        xml_file = os.path.join(xml_path, f)
        print(xml_file)

        tree = ET.parse(xml_file)
        root = tree.getroot()
        if root.tag != 'annotation':
            raise Exception('pascal voc xml root element should be annotation, rather than {}'.format(root.tag))

        # elem is <folder>, <filename>, <size>, <object>
        for elem in root:
            current_parent = elem.tag
            current_sub = None
            object_name = None

            if elem.tag == 'folder':
                continue

            if elem.tag == 'filename':
                # 改成与xml文件同名的图片文件
                file_name = f.split(".")[0] + ".jpg"
                # file_name = elem.text
                # if file_name in category_set:
                #     raise Exception('file_name duplicated')

            # add img item only after parse <size> tag
            elif current_image_id is None and file_name is not None and size['width'] is not None:
                if file_name not in image_set:
                    current_image_id = addImgItem(file_name, size)
                    print('add image with {} and {}'.format(file_name, size))
                else:
                    raise Exception('duplicated image: {}'.format(file_name))
                    # subelem is <width>, <height>, <depth>, <name>, <bndbox>
            for subelem in elem:
                bndbox['xmin'] = None
                bndbox['xmax'] = None
                bndbox['ymin'] = None
                bndbox['ymax'] = None

                current_sub = subelem.tag
                if current_parent == 'object' and subelem.tag == 'name':
                    object_name = subelem.text
                    if object_name not in category_set:
                        current_category_id = addCatItem(object_name)
                    else:
                        current_category_id = category_set[object_name]

                elif current_parent == 'size':
                    if size[subelem.tag] is not None:
                        raise Exception('xml structure broken at size tag.')
                    size[subelem.tag] = int(subelem.text)

                # option is <xmin>, <ymin>, <xmax>, <ymax>, when subelem is <bndbox>
                for option in subelem:
                    if current_sub == 'bndbox':
                        if bndbox[option.tag] is not None:
                            raise Exception('xml structure corrupted at bndbox tag.')
                        bndbox[option.tag] = int(option.text)

                # only after parse the <object> tag
                if bndbox['xmin'] is not None:
                    if object_name is None:
                        raise Exception('xml structure broken at bndbox tag')
                    if current_image_id is None:
                        raise Exception('xml structure broken at bndbox tag')
                    if current_category_id is None:
                        raise Exception('xml structure broken at bndbox tag')
                    bbox = []
                    # x
                    bbox.append(bndbox['xmin'])
                    # y
                    bbox.append(bndbox['ymin'])
                    # w
                    bbox.append(bndbox['xmax'] - bndbox['xmin'])
                    # h
                    bbox.append(bndbox['ymax'] - bndbox['ymin'])
                    print('add annotation with {},{},{},{}'.format(object_name, current_image_id, current_category_id,
                                                                   bbox))
                    addAnnoItem(object_name, current_image_id, current_category_id, bbox)
    json.dump(coco, open(json_save_path, 'w'))

if __name__ == '__main__':
    #通过txt文件生成
    # voc_data_dir="E:/VOCdevkit/VOC2007"
    # json_save_path="E:/VOCdevkit/voc2007trainval.json"
    # parseXmlFiles_by_txt(voc_data_dir,json_save_path,"trainval")

    #通过文件夹生成
    ann_path='/path/to/your/xml/folder'
    json_save_path="instances_val.json"
    parseXmlFiles(ann_path,json_save_path)

四、训练

1、创建配置文件

类似于YOLO,efficientdet也需要创建配置文件,直接复制projects文件夹的coco.yml并改名,并根据自己的数据集进行修改。

2、修改训练参数

3、训练

使用下方命令进行训练

python train.py

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1606646.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【3GPP】【核心网】【LTE】史上最全 闲时被叫CSFB 深度分析

3.2 闲时被叫CSFB 3.2.1 闲时被叫CSFB基本流程 被叫CSFB消息附近通常有一条Paging寻呼&#xff0c;然后进行CSFB流程&#xff1a; &#xff08;1&#xff09;UE向MME发起拓展服务请求&#xff0c;同时上报TMSI和承载状态&#xff0c;该条消息的服务类型字段中会区分主/被叫&a…

NASA数据集——2017 年 12 月圣巴巴拉山托马斯大火的烟雾和灰烬数据集

Across the Channel Investigating Diel Dynamics project 简介 圣巴巴拉海峡的 ACIDD&#xff08;穿越海峡调查昼夜动态&#xff09;项目最初旨在描述浮游植物种群的日变化&#xff0c;但随着 2017 年 12 月圣巴巴拉山托马斯大火的发生&#xff0c;该项目演变为一项研究&…

JS绘制电流闪烁流动效果

<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>电流闪动动效</title><style>.sd1 {dis…

传统外呼吃力不讨好?AI智能外呼降低85%人力成本!

前几天有电商的客户来咨询&#xff0c;他们每逢大促客服压力就激增&#xff0c;主要原因就是客服人员少&#xff0c;遇到这种高峰期根本来不及打电话&#xff0c;招新人的话培训时间长&#xff0c;算下来人力成本相当高。因此他们想借助智能外呼看能否解决这个难题。这种时候就…

CTFshow-PWN-前置基础(pwn21-pwn22)

关于 RELRO 保护的基础知识可以参考我上一篇博客 pwn20&#xff1a; https://myon6.blog.csdn.net/article/details/137935702?spm1001.2014.3001.5502 目录 1、pwn21 2、 pwn22 1、pwn21 提交ctfshow{【.got表与.got.plt是否可写(可写为1&#xff0c;不可写为0)】,【.got的…

2024-4-15-ARM作业

实现字符串数据收发函数的封装 源代码&#xff1a; main.c #include "gpio.h"#include "uart4.h"int main(){uart4_config();while (1){// char agetchar();// putchar(a1);char s[20];gets(s);puts(s);//putchar(\n);putchar(\r);}return 0;}uart4.c …

开发一个农场小游戏需要多少钱

开发一个农场小游戏的费用因多个因素而异&#xff0c;包括但不限于游戏的规模、复杂性、功能需求、设计复杂度、开发团队的规模和经验&#xff0c;以及项目的时间周期等。因此&#xff0c;无法给出确切的费用数字。 具体来说&#xff0c;游戏的复杂程度和包含的功能特性数量会直…

Claude和chatgpt的区别

ChatGPT是OpenAI开发的人工智能的聊天机器人&#xff0c;它可以生成文章、代码并执行各种任务。是Open AI发布的第一款大语言模型&#xff0c;GPT4效果相比chatgpt大幅提升。尤其是最新版的模型&#xff0c;OpenAI几天前刚刚发布的GPT-4-Turbo-2024-04-09版本&#xff0c;大幅超…

Redis几种常见的应用方式

1.登录认证 redis最常见的应用就是&#xff0c;登录认证把。再首次登录返回给前端token&#xff0c;把用户名和登录状态缓存到redis一段时间&#xff0c;每次其他请求进来过滤器那这token解析出来的用户名或其他关键的key值&#xff0c;再redis里面查询缓存&#xff0c;有则直…

【Linux】—管理、设置防火墙规则(firewalld详解)

【Linux】—管理、设置防火墙规则&#xff08;firewalld详解&#xff09; 一、firewalld1.1 服务的启动、停止1.2 查看和设置默认区域1.3 使用firewalld进行规则配置1.4 重新加载防火墙配置1.5 查询已开放的端口、已允许的服务 &#x1f496;The Begin&#x1f496;点点关注&am…

OCR文字识别在物联网中的应用

在科技飞速发展的时代&#xff0c;OCR识别与物联网技术的结合为我们带来了前所未有的便利与革新。OCR&#xff0c;即光学字符识别技术&#xff0c;是一种将纸质文档上的文字、数字等信息转化为计算机可编辑的文本格式的技术。而物联网技术则是通过网络将各种物品连接起来&#…

eBay、亚马逊自养号测评如何避免风控账号关联选择合适网络IP环境

在自养号下单中选择适合的网络环境至关重要。经过多次实践与测试&#xff0c;积累了大量的经验&#xff0c;希望能够与大家分享&#xff0c;帮助大家避开陷阱&#xff0c;顺利前行。 市面上的网络环境种类繁多&#xff0c;从纯IP类的Luminati、Rola&#xff0c;到纯环境类的VM…

024——驱动、server、client、GUI全功能联调

目录 一、本次修改 二、GUI和Client之间联调 2.1 工程结构修改 2.2 将TCP程序修改为可被其它程序调用 2.3 优化显示界面 2.4 解决GUI通过tcp send的问题 2.5 处理服务器数据 时间不是很多了&#xff0c;我想压缩一下快点把属于毕设的这部分搞完&#xff0c;俺要出去旅游…

[算法] 动态规划

对这个算法的原有印象就是非常难理解&#xff0c;而且怎么都感觉这个算法名称有些误导&#xff1b;或者是要引申着看&#xff1f;因为里面的动态是怎么个动态&#xff1f; 这里的动态是指每一次的计算结果会影响下一次&#xff0c;或者再次的运算效率&#xff0c;也就是说下一次…

记录ubuntu20.04安装nvidia-525.85.05显卡驱动(学习笔记2024.4.15、4.16)

电脑&#xff1a;华硕天选X2024 显卡&#xff1a;4060Ti i5-14400F 架构&#xff1a;x86_64 我需要使用Linux系统使用IsaacSim进行仿真&#xff0c;所以安装的都是IsaacSim中的推荐版本。 一.对新鲜的电脑进行分盘 电脑刚到手&#xff0c;900多个G全在C盘里&#xff0c;给它…

历史遗留问题1-Oracle Mysql如何存储数据、索引

在学习到Oracle redo和undo时&#xff0c;涉及到很多存储结构的知识&#xff0c;但是网上的教程都不是很详细&#xff0c;就去复习了一下mysql&#xff0c;感觉是不是开源的问题&#xff0c;Mysql的社区和知识沉淀远高于Oracle&#xff0c; 对于初学者很友好&#xff0c;我想请…

Python文件处理--进阶

Python标准库文件操作相关模块&#xff1a; 1.使用pickle序列化 序列化指的是&#xff1a;将对象转化成“串行化”数据形式&#xff0c;存储到硬盘或通过网络传输到其他地方。反序列化是指相反的过程&#xff0c;将读取到的“串行化数据”转化成对象。我们可以使用pickle模块…

vivo怎么录屏?玩转手机新体验!(2024最新)

“最近新入手了一款vivo手机&#xff0c;感觉用起来真的很顺手&#xff0c;各种功能都很强大。昨天和朋友一起打游戏&#xff0c;突然想到要记录下精彩瞬间&#xff0c;但是找遍了手机&#xff0c;都没有找到录屏功能。我想请教一下各位vivo手机用户&#xff0c;你们通常在哪里…

亚马逊Bedrock凭借Anthropic的开创性Claude 3系列扩展了AI产品组合

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

基于SSM+Jsp+Mysql的文物管理系统

开发语言&#xff1a;Java框架&#xff1a;ssm技术&#xff1a;JSPJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包…