C题持续更新中
- 问题一
- 问题二
- 代码
- 混合ARIMA-LSTM模型构建
- 完整数据与代码
- 第一问
- 第二问
问题一
问题一要求对未来30天每天及每小时的货量进行预测。首先,利用混合ARIMA-LSTM模型进行时间序列预测。ARIMA模型擅长捕捉线性特征和趋势,而LSTM模型处理非线性关系和长期依赖。通过结合这两种模型,可以提高预测精度。具体步骤包括:
- 建立ARIMA模型,通过差分运算和ARMA模型组合来处理时间序列数据。
- 建立LSTM模型,利用其长短期记忆能力处理复杂的时间序列模式。
- 结合ARIMA和LSTM模型的预测结果,通过自适应混合算法调整权重,以提高预测准确性。
问题二
问题二要求在考虑运输线路改变的前提下,对未来30天每天及每小时的货量进行预测。解决方法涉及建立神经网络模型和聚类算法。具体步骤包括:
- 利用K-means算法对分拣中心的货量进行聚类,以理解不同类型货物的分布规律。
- 建立BP神经网络模型,通过特征选取和网络训练,预测货量变化。
- 基于聚类和BP神经网络的预测结果,分析运输线路变化对货量的影响,并通过回归图和折线图直观展示货量变化情况。
代码
混合ARIMA-LSTM模型构建
clc
clear
close all;
load('appendix1.mat') %读入附件1
mape_record = [];
W_record = [];
pre_record = [];
for c=1:size(appendix1,2) % 遍历每一个分拣中心
data = appendix1{1,c}; %将分拣中心另存出来
train_num = 5; %用几期的值作为参考来训练权重
%% 下面是ARIMA计算权重
[y_train_ARIMA]=ARIMA(data(1:end-train_num,3),train_num);
y_ture_ARIMA = data(end-train_num+1:end,3);
wmape_ARIMA = sum(abs(y_train_ARIMA-y_ture_ARIMA)./y_ture_ARIMA);
% 下面计算MAPE
APE_ARIMA = abs(y_ture_ARIMA - y_train_ARIMA) ./ abs(y_ture_ARIMA);
MAPE_ARIMA = mean(APE_ARIMA);
%% 下面是LSTM计算权重
ref = 30; %参考历史的多少期
[y_train_LSTM]=LSTM(data(1:end-train_num,3),ref,train_num);
y_ture_LSTM = data(end-train_num+1:end,3);
wmape_LSTM = sum(abs(y_train_LSTM-y_ture_LSTM)./y_ture_LSTM);
% 下面计算MAPE
APE_LSTM = abs(y_ture_LSTM - y_train_LSTM) ./ abs(y_ture_LSTM);
MAPE_LSTM = mean(APE_LSTM);
%% 下面计算权重
W_ARIMA = (1/wmape_ARIMA)/((1/wmape_ARIMA)+(1/wmape_LSTM));
W_LSTM = 1-W_ARIMA;
W_record(c,1) = data(1,1); %记录id
W_record(c,2) = W_ARIMA; %记录ARIMA的MAPE
W_record(c,3) = W_LSTM; %记录LSTM的MAPE
%% 下面记录MAPE
mape_record(c,1) = data(1,1); %记录id
mape_record(c,2) = MAPE_ARIMA; %记录ARIMA的MAPE
mape_record(c,3) = MAPE_LSTM; %记录LSTM的MAPE
%% 下面正式预测
pre_step = 30; %预测未来多少期的值
% ARIMA
[pre_ARIMA]=ARIMA(data(:,3),pre_step);
% LSTM
[pre_LSTM]=LSTM(data(:,3),ref,pre_step);
% 混合
pre = pre_ARIMA*W_ARIMA + pre_LSTM*W_LSTM;
pre_record(1,c) = data(1,1); %记录id
pre_record(2:1+pre_step,c) = pre; %记录预测值
end