JVM 方法调用之方法分派

news2025/1/20 14:53:51

JVM 方法调用之方法分派

文章目录

  • JVM 方法调用之方法分派
    • 1.何为分派
    • 2.静态分派
    • 3.动态分派
    • 4.单分派与多分派
    • 5.动态分派的实现

1.何为分派

在上一篇文章《方法调用之解析调用》中讲到了解析调用,而解析调用是一个静态过程,在类加载的解析阶段就确定了方法的直接引用。很明显,其他不满足解析调用的方法调用是如何确定其直接引用的呢,这就涉及到本篇文章所讲的重点概念,分派(Dispatch)。分派即可能是静态的也可能是动态的,根据分派依据的宗量数可分为单分派和多分派。所以两两组合就构成了,静态单分派、静态多分派、动态单分派及动态多分派4种情况。

方法的接受者与方法的参数统称为方法宗量。具体的宗量数如何确定,请往下看。

在往下讲解之前,需要讲明一下两个重要的概念。

Object str = new String()

以上代码中,我们把 Object 称为变量str 的“静态类型”(Static Type)或者“外观类型”(Apparent Type),后面的String 则称之为变量str的“实际类型”(Actual Type)或者“运行时类型”(Runtime Type)。因为静态类型是编译器可知的,而实际类型是在编译器不一定可知,在运行时才能真正完全确定,如下DEMO。

// 在运行前,(new Random()).nextBoolean的值是无法预知的,运行后才可得到具体值
Object obj = (new Random()).nextBoolean ? new String() : new Integer();

2.静态分派

所有依赖静态类型来决定方法调用版本的分派动作,都称为静态分派。

静态分派最典型的应用就是方法重载(Overload),静态分派发生在编译阶段,因此确定静态分派的动作实际上不是由虚拟机来执行。另外需要注意的是,Javac编译器虽然能确定方法重载的版本,但是很多情况下,这个重载版本并不是唯一的,往往只能确定一个“相对更加合适”的版本。产生这种模糊结论的主要原因就是字面量天生的模糊性,它没有显式的静态类型,它的静态类型只能通过语义、语法规则去历届和推断。

案例代码

public class StaticDispatch {

    public static void main(String[] args) {
        say('a');
    }

    public static final void say(char c){
        System.out.println("char");
    }

    public static final void say(int c){
        System.out.println("int");
    }

    public static final void say(long c){
        System.out.println("long");
    }

    public static final void say(float c){
        System.out.println("float");
    }

    public static final void say(double c){
        System.out.println("double");
    }

    public static final void say(Character c){
        System.out.println("Character");
    }

    public static final void say(Serializable c){
        System.out.println("Serializable");
    }

    public static final void say(Object c){
        System.out.println("Object");
    }

    public static final void say(char... chars){
        System.out.println("char...");
    }

}

上述代码,由于 ‘a’ 是一个char类型的数据,所以运行结果为:

char

如果我们将say(char c)方法注释掉,那么 ‘a’ 也可以表示为字符的Unicode编码数值,即97,所以 ‘a’ 也可以表示数字97,此时 ‘a’ 发生了自动类型转换,会选择参数类型为 int 的重载版本,运行结果为:

int

如果此时再将say(int c) 方法注释掉,那么 ‘a’ 将会再发生一次自动类型转换,进一步转型为 long,输出结果如下。同理,相继注释掉后面参数类型为基本类型的重载方法,则会按照 **char > int > long > float > double **的顺序转型匹配,但是不会存在转型至byteshort类型(不安全)。

long

如果将say(long c)say(float c)say(double c)都注释掉,此时 ‘a’ 将会自动装箱为包装类型 Character,所以输出结果为:

Character

如果再将say(Character c) 注释掉,那么此时 ‘a’ 转换为包装类型 Character 后,会转换为其实现的接口,由于 SerializableCharacter 实现的一个接口,所以输出结果为:

Serializable

同理,‘a’ 转换为包装类型 Character 后,会转型为其父类,根据继承关系从下往上找,此时输出结果为:

Object

最后,变长参数的重载优先级是最低的,注释掉其他所有重载方法后,输出结果:

char...

3.动态分派

动态分派发生在运行期间,根据其实际类型确定方法调用版本。

动态分派与Java语言多态性的一个重要体现-重写(Override)关系密切。下面我们先以案例代码结合讲解。

案例代码

public class DynamicDispatch {
    
    static abstract class Human{
        public abstract void say();
    }
    
    static class Man extends Human{
        @Override
        public void say() {
            System.out.println("Man");
        }
    }

    static class Woman extends Human{
        @Override
        public void say() {
            System.out.println("Woman");
        }
    }

    public static void main(String[] args) {
        Human man = new Man();
        Human woman = new Woman();
        man.say();
        woman.say();
    }
    
}

运行结果想必都知道:

Man
Woman

但是我们反编译字节码,可以对应的两条方法调用的符号引用(Human.say:()V)都是一样的:

 public static void main(java.lang.String[]);
    descriptor: ([Ljava/lang/String;)V
    flags: (0x0009) ACC_PUBLIC, ACC_STATIC
    Code:
      stack=2, locals=3, args_size=1
         0: new           #2                  // class com/mytest/project/method/dispatch/DynamicDispatch$Man
         3: dup
         4: invokespecial #3                  // Method com/mytest/project/method/dispatch/DynamicDispatch$Man."<init>":()V
         7: astore_1
         8: new           #4                  // class com/mytest/project/method/dispatch/DynamicDispatch$Woman
        11: dup
        12: invokespecial #5                  // Method com/mytest/project/method/dispatch/DynamicDispatch$Woman."<init>":()V
        15: astore_2
        16: aload_1
        17: invokevirtual #6                  // Method com/mytest/project/method/dispatch/DynamicDispatch$Human.say:()V
        20: aload_2
        21: invokevirtual #6                  // Method com/mytest/project/method/dispatch/DynamicDispatch$Human.say:()V
        24: return
      LineNumberTable:
        line 30: 0
        line 31: 8
        line 32: 16
        line 33: 20
        line 34: 24
      LocalVariableTable:
        Start  Length  Slot  Name   Signature
            0      25     0  args   [Ljava/lang/String;
            8      17     1   man   Lcom/mytest/project/method/dispatch/DynamicDispatch$Human;
           16       9     2 woman   Lcom/mytest/project/method/dispatch/DynamicDispatch$Human;
    MethodParameters:
      Name                           Flags
      args
}

虽然符号引用一样,但是其真正的调用版本并不相同。所以解决问题的关键,我们可以从 invokevirtual 指令的是如何实现多态查找的过程入手,根据《Java虚拟机规范》,invokevirtual 指令的运行时解析过程大致可分如下几步:

1)将当前线程的操作数栈的栈顶元素指向的对象的实际类型记做C。

2)如果在类型C 中找到与常量中的简单名称和描述符都相同的方法,则进行访问权限效验,如果通过则返回该方法的直接引用;不通过则throws an IllegalAccessError

3)否则,按照继承关系从下往上依次对C的父类进行搜索和权限效验。

4)否则,如果没有找到合适的方法(找到了抽象方法),则会throws an AbstractMethodError

4.单分派与多分派

单分派是根据一个宗量对目标方法进行选择,多分派则是根据多余一个宗量对目标方法进行选择。光从定义上可能难以理解,下面结合案例代码进行讲解。

案例代码

public class Dispatch {
  
  	static class QQ{}
  	static class _360{}
    
    static class Father{
        public void hardChoice(QQ arg){
            System.out.println("Father QQ");
        };

        public void hardChoice(_360 arg){
            System.out.println("Father _360");
        };
    }

    static class Son extends Father{
        public void hardChoice(QQ arg){
            System.out.println("Son QQ");
        };

        public void hardChoice(_360 arg){
            System.out.println("Son _360");
        };
    }

    public static void main(String[] args) {
        Father father = new Father();
        Father son = new Son();
        father.select(new QQ());  // Dispatch$Father.select:(LQQ;)V
        son.select(new _360()); // Dispatch$Father.select:(L_360;)V
    }
    
}

运行结果:

Father QQ
Son _360

在编译期,也就是静态分派过程中,选择目标方法的依据有两点:一是静态类型是 Father 还是 Son,二是方法参数是 QQ 还是 _360。很显然,这决定了最终产生的方法调用的字面量,因为是根据两个宗量进行分派的,所以在Java语言中静态分派属于多分派类型。

在运行期,也就是动态分派的过程中。实际分派起决定性作用的就是方法接受者的实际类型,因为此时的调用方法的签名已定(select:(LQQ;)V),而唯一需要进行选择的就是方法接受者,所以在Java语言里动态分派属于单分派。

5.动态分派的实现

动态分派是执行非常频繁的动作,而且动态分派的方法调用版本需要运行时在接收者类型的方法元数据中搜索合适的目标方法,因此,JVM 实现基于执行性能的考虑,真正运行时一般不会如此频繁地去反复搜索类型元数据。面对这种情况,一种基础而且常见的优化手段是为类型在方法区中建立一个虚方法表(VirtualMethod Table,也称为vtable,与此对应的,在 invokeinterface 执行时也会用到接口方法表 —— Interface Method Table,简称 itable),使用虚方法表索引来代替元数据查找以提高性能。我们先看看上一节案例代码所对应的虚方法表结构示例,如图所示。

在这里插入图片描述

虚方法表中存放着各个方法的实际入口地址。如果某个方法在子类中没有被重写,那子类的虚方法表里面的地址入口和父类相同方法的地址入口是一致的,都指向父类的实现入口。如果子类中重写了这个方法,子类方法表中的地址将会替换为指向子类实现版本的入口地址。Son 重写了来自 Father 的全部方法,因此 Son 的方法表没有指向 Father 类型数据的箭头。但是 Son 和 Father 都没有重写来自 Object 的方法,所以它们的方法表中所有从 Object 继承来的方法都指向了 Object 的数据类型。

为了程序实现上的方便,具有相同签名的方法,在父类、子类的虚方法表中都应当具有一样的索引序号,这样当类型变换时,仅需要变更查找的方法表,就可以从不同的虚方法表中按索引转换出所需的入口地址。方法表一般在类加载的连接阶段进行初始化,准备了类的变量初始值后,虚拟机会把该类的方法表也初始化完毕

方法表是分派调用的“稳定优化”手段,虚拟机除了使用方法表之外,在条件允许的情况下,还会使用内联缓存(Inline Cache)和基于“类型继承关系分析”(Class Hierarchy Analysis,CHA)技术的守护内联(Guarded Inlining)两种非稳定的“激进优化”手段来获得更高的性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1602604.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

黑马点评(四) -- 分布式锁

1 . 分布式锁基本原理和实现方式对比 分布式锁&#xff1a;满足分布式系统或集群模式下多进程可见并且互斥的锁。 分布式锁的核心思想就是让大家都使用同一把锁&#xff0c;只要大家使用的是同一把锁&#xff0c;那么我们就能锁住线程&#xff0c;不让线程进行&#xff0c;让…

​宁德时代:用一块电池玩转两个万亿赛道

2022 到 2023 连续两年&#xff0c;被称为国内储能行业的大储&#xff08;发电侧、电网侧&#xff09;元年和中储&#xff08;工商业&#xff09;元年&#xff0c;整个储能行业可谓是异常火爆&#xff0c;众多资本或企业纷纷涌入该赛道。 对于行业从业者来说&#xff0c;所从事…

第十六篇:springboot案例

文章目录 一、准备工作1.1 需求说明1.2 环境搭建1.3 开发规范1.4 思路 二、部门管理2.1 查询部门2.2 删除部门2.3 新增部门2.4 修改部门2.5 RequestMapping 三、员工管理3.1 分页查询3.2 删除员工3.3 新增员工3.3.1 新增员工3.3.2 文件上传 3.4 修改员工3.4.1 页面回显3.4.2 修…

MySQL基础知识——MySQL事务

事务背景 什么是事务&#xff1f; 一组由一个或多个数据库操作组成的操作组&#xff0c;能够原子的执行&#xff0c;且事务间相互独立&#xff1b; 简单来说&#xff0c;事务就是要保证一组数据库操作&#xff0c;要么全部成功&#xff0c;要么全部失败。 注&#xff1a;MyS…

【Java探索之旅】掌握数组操作,轻松应对编程挑战

&#x1f3a5; 屿小夏 &#xff1a; 个人主页 &#x1f525;个人专栏 &#xff1a; Java编程秘籍 &#x1f304; 莫道桑榆晚&#xff0c;为霞尚满天&#xff01; 文章目录 &#x1f4d1;前言一、数组巩固练习1.1 数组转字符串1.2 数组拷贝1.3 求数组中的平均值1.4 查找数组中指…

Node Version Manager(nvm):轻松管理 Node.js 版本的利器

文章目录 前言一、名词解释1、node.js是什么&#xff1f;2、nvm是什么&#xff1f; 二、安装1.在 Linux/macOS 上安装2.在 Windows 上安装 二、使用1.查看可安装的node版本2.安装node3. 查看已安装node4.切换node版本5.其它 总结 前言 Node.js 是现代 Web 开发中不可或缺的一部…

书生·浦语大模型实战营之Lagent AgentLego 智能体应用搭建

书生浦语大模型实战营之Lagent & AgentLego 智能体应用搭建 Lagent 简介 Lagent 是一个轻量级开源智能体框架&#xff0c;旨在让用户可以高效地构建基于大语言模型的智能体。同时它也提供了一些典型工具以增强大语言模型的能力。 Lagent 目前已经支持了包括 AutoGPT、R…

【系统分析师】应用数学部分

文章目录 1、图论应用1.1 最小生成树1.2 最短路径1.3 网络与最大流量 2、运筹方法2.1 关键路径法2.2 线性规划2.3 动态规划2.4 预测与决策2.4.1 囚徒困境2.4.2 实例&#xff1a;商业竞争 2.5 状态转移矩阵2.6 排队论2.7 决策2.7.1 决策2.7.2不确定型决策2.7.3 决策树2.7.4 决策…

4.17号驱动

中断子系统 1. 中断工作原理 1.1 异常处理流程 保存现场(cpu自动完成) 保存cpsr寄存器中的值&#xff0c;到spsr_寄存器中 修改cpsr寄存器中的值 修改状态位(T位) 根据需要禁止相应的中断位(I/F) 修改对应模式位 保存函数的返回地址到lr寄存器中 修改pc指向异常向量表 …

Realsense D455 调试

1 Realsense D455 配置&#xff1a; RGB&#xff1a;彩色相机&#xff0c;FOV&#xff08;h&#xff0c;v&#xff09;&#xff08; 90*65 &#xff09;红外点阵发射&#xff1a;位于上图中RGB右边&#xff0c;发射特定模式的红外光&#xff0c;通常是一种点阵图案&#xff0c…

深度学习架构(CNN、RNN、GAN、Transformers、编码器-解码器架构)的友好介绍。

一、说明 本博客旨在对涉及卷积神经网络 &#xff08;CNN&#xff09;、递归神经网络 &#xff08;RNN&#xff09;、生成对抗网络 &#xff08;GAN&#xff09;、转换器和编码器-解码器架构的深度学习架构进行友好介绍。让我们开始吧&#xff01;&#xff01; 二、卷积神经网络…

Dryad Girl Fawnia

一个可爱的Dryad Girl Fawnia的三维模型。她有ARKit混合形状,人形装备,多种颜色可供选择。她将是一个完美的角色,幻想或装扮游戏。 🔥 Dryad Girl | Fawnia 一个可爱的Dryad Girl Fawnia的三维模型。她有ARKit混合形状,人形装备,多种颜色可供选择。她将是一个完美的角色…

网络攻防演练:一场针锋相对的技术博弈与安全防护实践

随着ChatGPT5的即将上线&#xff0c;其安全防护能力面临更为严峻的考验。网络攻防演练作为检验系统安全性能、提升防御体系的关键环节&#xff0c;对于确保ChatGPT5的安全稳定运行具有重要意义。本文将深入探讨网络攻击与防守之间的动态关系&#xff0c;并提供在网络攻防演练中…

【Leetcode每日一题】 分治 - 颜色分类(难度⭐⭐)(57)

1. 题目解析 题目链接&#xff1a;75. 颜色分类 这个问题的理解其实相当简单&#xff0c;只需看一下示例&#xff0c;基本就能明白其含义了。 2.算法原理 算法思路解析 本算法采用三指针法&#xff0c;将数组划分为三个区域&#xff0c;分别用于存放值为0、1和2的元素。通过…

vivado 设置 VIO 核以执行测量、查看 VIO 核状态

设置 VIO 核以执行测量 您添加到自己的设计中的 VIO 核会显示在“硬件 (Hardware) ”窗口中的目标器件下。如果未显示这些 VIO 核 &#xff0c; 请右键 单击器件并选择“ Refresh Hardware ”。这样将重新扫描 FPGA 或 ACAP 并刷新“ Hardware ”窗口。 注释 &#xff…

【免费】基于SOE算法的多时段随机配电网重构方法

1 主要内容 该程序是完全复现《Switch Opening and Exchange Method for Stochastic Distribution Network Reconfiguration》&#xff0c;也是一个开源代码&#xff0c;网上有些人卖的还挺贵&#xff0c;本次免费分享给大家&#xff0c;代码主要做的是一个通过配电网重构获取…

“面包板”是什么?有啥用?

同学们大家好&#xff0c;今天我们继续学习杨欣的《电子设计从零开始》&#xff0c;这本书从基本原理出发&#xff0c;知识点遍及无线电通讯、仪器设计、三极管电路、集成电路、传感器、数字电路基础、单片机及应用实例&#xff0c;可以说是全面系统地介绍了电子设计所需的知识…

一种范围可调式测径仪 满足生产各规格检测!

摘要&#xff1a;范围可调式测径仪&#xff0c;满足各种外径尺寸的产品检测&#xff0c;囊括产线的所有规格&#xff0c;性价比更高的测径仪。 关键词&#xff1a;测径仪,范围可调测径仪,在线测径仪 引言 生产线中&#xff0c;各种外径尺寸的线材、棒材、管材都有生产&#xff…

【SAP NWDI】服务开启:SLD,CM,CMS(二)

一、启用System Landscape Directory 二、启用 NWDI using CMS

CAN的底层驱动

框架图 拆解链路模型 CAN子系统 can_controller Core 包含协议控制器和接收/发送移位寄存器。它可处理所有 ISO 11898-1: 2015 协议功能,并支持 11 位和 29 位标识符。