MySQL基础知识——MySQL事务

news2025/1/22 13:01:01

事务背景


什么是事务?

一组由一个或多个数据库操作组成的操作组,能够原子的执行,且事务间相互独立;

简单来说,事务就是要保证一组数据库操作,要么全部成功,要么全部失败。

注:MySQL是一个支持多引擎的系统,并不是所有的引擎都支持事务。

提到事务,你肯定会想到ACID(Atomicity、 Consistency、 Isolation、 Durability),那么什么是ACID呢?

  • 原子性(Atomicity):事务中的操作全部执行,或一个也不执行;
  • 隔离性(Isolation):事务的执行独立于其它事务,互不影响;(影响程度根据隔离级别而定)
  • 持久性(Durability):事务中的操作完成,则对数据库的影响不会变更,持久保存;
  • 一致性(Consistency):事务执行的结果是可预期的,同样的输入一定得出同样的输出;

保证数据一致性,是事务操作的最终目的(AID皆为此);

隔离性与隔离级别


当数据库上有多个事务同时执行的时候, 就可能出现脏读(dirtyread) 、 不可重复读(non-repeatable read) 、 幻读( phantom read) 的问题, 为了解决这些问题, 就有了“隔离级别”的概念。

在谈隔离级别之前, 你首先要知道, 隔离得越严实, 效率就会越低。 因此很多时候, 我们都要在二者之间寻找一个平衡点。

下面对SQL标准的事务隔离级别进行逐一介绍(隔离性由低到高):

  • 读未提交(read uncommitted): 一个事务还没提交时, 它做的变更就能被别的事务看到。
  • 读提交(read committed): 一个事务提交之后, 它做的变更才会被其他事务看到。
  • 可重复读(repeatable read): 一个事务执行过程中看到的数据, 总是跟这个事务在启动时看到的数据是一致的。 当然在可重复读隔离级别下, 未提交变更对其他事务也是不可见的。
  • 串行化(serializable): 顾名思义是对于同一行记录, “写”会加“写锁”, “读”会加“读锁”。 当出现读写锁冲突的时候, 后访问的事务必须等前一个事务执行完成, 才能继续执行。

其中“读提交”和“可重复读”比较难理解,下面用一个例子说明这几种隔离级别。

假设数据表T中只有一列, 其中一行的值为1, 下面是按照时间顺序执行两个事务的行为。

mysql> create table T(c int) engine=InnoDB; 
insert into T(c) values(1);

 

接下来,我们看一下在不同隔离级别下,事务A会有哪些不同的返回结果:

  • 若隔离级别是“读未提交”, 则V1的值就是2。 这时候事务B虽然还没有提交, 但是结果已经被A看到了。 因此, V2、 V3也都是2。
  • 若隔离级别是“读提交”, 则V1是1, V2的值是2。 事务B的更新在提交后才能被A看到。 所以, V3的值也是2。
  • 若隔离级别是“可重复读”, 则V1、 V2是1, V3是2。 之所以V2还是1, 遵循的就是这个要求:事务在执行期间看到的数据前后必须是一致的。
  • 若隔离级别是“串行化”, 则在事务B执行“将1改成2”的时候, 会被锁住。 直到事务A提交后,事务B才可以继续执行。 所以从A的角度看, V1、 V2值是1, V3的值是2。

在实现上,数据库里面会创建一个视图,访问的时候以视图的逻辑结果为准。

  • 在“可重复读”隔离级别下,这个视图是在事务启动时创建的,整个事务存在期间都用这个视图。
  • 在“读提交”隔离级别下,这个视图是在每个SELECT语句开始执行的时候创建的。

注1:“读未提交”隔离级别下直接返回记录上的最新值,所以没有视图概念。而“串行化”隔离级别下直接使用加锁的方式来避免并发访问。

注2:不同数据库其默认隔离级别有所差异。Oracle默认隔离界别为“读提交”,因此对于一些从Oracle迁移到MySQL的应用,为保证数据库隔离级别的一致,需要把MYSQL隔离级别设为“读提交”,MySQL默认隔离级别为“可重复读”。

事务隔离的实现


下面以“可重复读”隔离级别为例,介绍事务隔离是怎么实现的。

在MySQL中,实际上每条记录在更新的时候都会记录一条回滚操作。记录上的最新值,通过回滚操作,都可以得到前一个状态值。

假设一个值从1被按顺序改成了2、3、4,在回滚日志里面就会有类似下面的记录:

记录当前值是4,在查询记录时,不同时刻启动的事务会有不同的read-view。在视图A、B、C里面,这一个记录的值分别是1、2、4,同一条记录在系统中可以存在多个版本,就是数据库的多版本并发控制(MVCC);对于read-view A,要得到1,就必须将当前值依次执行图中所有的回滚操作得到。

同时你会发现, 即使现在有另外一个事务正在将4改成5, 这个事务跟read-view A、 B、 C对应的事务是不会冲突的。

问:回滚日志什么时候删除?

当没有事务再需要用到这些回滚段日志时,回滚日志会被删除。即当系统里没有比这个回滚日志更早的read-view的时候。(换句话说,回滚日志一般在当前视图所在事务中才会被用到)

问:为什么建议尽量不要使用长事务?

1)长事务表示系统存在很老的事务视图。这些事务可能访问数据库的任何数据,所以事务提交前,可能用到的回滚记录必须保留,导致回滚记录占用大量存储空间;

2)回滚日志跟数据字典一起放在ibdata文件中,即使长事务提交,回滚段被清理,文件也不会变小。我见过数据只有20GB,而回滚段有200GB的库。最终只好为了清理回滚段,重建整个库。( MySQL

3)长事务还占用锁资源,也可能拖垮整个库;

问:为避免长事务,业务开发和DBA分别应该采取哪些措施?

业务侧:

1)去掉没必要的事务,比如查询语句;

2)设置SQL执行超时时间;

DBA侧:

1)监控 information_schema.Innodb_trx表,设置长事务阈值,超过就报警/或者kill;

2)Percona的pt-kill这个工具不错,推荐使用;

3)在业务功能测试阶段要求输出所有的general_log,分析日志行为提前发现问题;

4)把innodb_undo_tablespaces设置>=2,出现大事务导致回滚段过大,方便清理。(MySQL >= 5.6)

事务的启动方式


autocommit用于决定是否开启事务自动提交:

1)autocommit=0

  • 手动提交,当用户执行start transaction/begin时(事务初始化),一个事务开启,当用户执行commit命令时当前事务提交。从用户执行start transaction命令到用户执行commit之间的一系列操作为一个完整的事务周期。回滚事务使用rollback命令;
  • 如果为显式通过start transaction/begin开启事务,则会在执行SQL时自动开启一个事务,但不提交;

2)autocommit=1

  • 若用户未执行start transaction/begin对数据库进行操作,系统默认用户对数据库的每一个操作为一个孤立的事务,也就是说用户每进行一次操作系都会即时提交或者即时回滚。这种情况下用户的每一个操作都是一个完整的事务周期。
  • 若显式执行start transaction/begin,则需要显式提交;情况同autocommit=0;

注:有些客户端连接框架会默认连接成功后先执行一个set autocommit=0的命令。这可能导致接下来的查询都在事务中,如果是长连接,就可能导致了意外的长事务;比如Java的Spring框架,可以显式告诉驱动,是否在事务环境中执行语句。

问:事务在什么时候会被隐式提交?

1)当设置autocommit = 1时,对于已经开启但是未提交的事务,若遇到DDL/begin/lock table/unlock table等语句时,会自动提交上一个事务;

2)当设置autocommit = 0时,对于已经开启但是未提交的事务,若遇到DDL/begin/lock table/unlock table等语句时,会自动回滚上一个事务;

MVCC实现


MVCC在InnoDB引擎层基于read view实现。

问:什么是事务ID?

1)引擎层用于唯一标识事务的ID,在事务开始时由InnoDB事务系统分配,按申请顺序严格递增;越早发起的事务,事务ID越小;

2)begin/start transaction命令不是InnoDB事务的起点,故不会生成事务ID;直到执行变更InnoDB表的语句,才会生成事务ID;

问:什么是数据版本?

1)每行数据有多个版本,按照事务ID倒序排列,每次事务更新数据时,会生成一个新的数据版本,并在版本中记录事务ID,即row trx_id;

2)数据表中的一行记录,可能有多个版本(row),每个版本有自己的row trx_id,可通过遍历拿到对应trx_id的版本;

3)数据版本存放在undo log中,每次查询时根据当前版本和undo log向前推算得出结果。比如,查询V2时,通过V4依次执行V3、V2算出来;

MVCC 并发控制原理详见:MVCC 并发控制原理-源码解析(非常详细)-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1602599.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Java探索之旅】掌握数组操作,轻松应对编程挑战

🎥 屿小夏 : 个人主页 🔥个人专栏 : Java编程秘籍 🌄 莫道桑榆晚,为霞尚满天! 文章目录 📑前言一、数组巩固练习1.1 数组转字符串1.2 数组拷贝1.3 求数组中的平均值1.4 查找数组中指…

Node Version Manager(nvm):轻松管理 Node.js 版本的利器

文章目录 前言一、名词解释1、node.js是什么?2、nvm是什么? 二、安装1.在 Linux/macOS 上安装2.在 Windows 上安装 二、使用1.查看可安装的node版本2.安装node3. 查看已安装node4.切换node版本5.其它 总结 前言 Node.js 是现代 Web 开发中不可或缺的一部…

书生·浦语大模型实战营之Lagent AgentLego 智能体应用搭建

书生浦语大模型实战营之Lagent & AgentLego 智能体应用搭建 Lagent 简介 Lagent 是一个轻量级开源智能体框架,旨在让用户可以高效地构建基于大语言模型的智能体。同时它也提供了一些典型工具以增强大语言模型的能力。 Lagent 目前已经支持了包括 AutoGPT、R…

【系统分析师】应用数学部分

文章目录 1、图论应用1.1 最小生成树1.2 最短路径1.3 网络与最大流量 2、运筹方法2.1 关键路径法2.2 线性规划2.3 动态规划2.4 预测与决策2.4.1 囚徒困境2.4.2 实例:商业竞争 2.5 状态转移矩阵2.6 排队论2.7 决策2.7.1 决策2.7.2不确定型决策2.7.3 决策树2.7.4 决策…

4.17号驱动

中断子系统 1. 中断工作原理 1.1 异常处理流程 保存现场(cpu自动完成) 保存cpsr寄存器中的值,到spsr_寄存器中 修改cpsr寄存器中的值 修改状态位(T位) 根据需要禁止相应的中断位(I/F) 修改对应模式位 保存函数的返回地址到lr寄存器中 修改pc指向异常向量表 …

Realsense D455 调试

1 Realsense D455 配置: RGB:彩色相机,FOV(h,v)( 90*65 )红外点阵发射:位于上图中RGB右边,发射特定模式的红外光,通常是一种点阵图案&#xff0c…

深度学习架构(CNN、RNN、GAN、Transformers、编码器-解码器架构)的友好介绍。

一、说明 本博客旨在对涉及卷积神经网络 (CNN)、递归神经网络 (RNN)、生成对抗网络 (GAN)、转换器和编码器-解码器架构的深度学习架构进行友好介绍。让我们开始吧!! 二、卷积神经网络…

Dryad Girl Fawnia

一个可爱的Dryad Girl Fawnia的三维模型。她有ARKit混合形状,人形装备,多种颜色可供选择。她将是一个完美的角色,幻想或装扮游戏。 🔥 Dryad Girl | Fawnia 一个可爱的Dryad Girl Fawnia的三维模型。她有ARKit混合形状,人形装备,多种颜色可供选择。她将是一个完美的角色…

网络攻防演练:一场针锋相对的技术博弈与安全防护实践

随着ChatGPT5的即将上线,其安全防护能力面临更为严峻的考验。网络攻防演练作为检验系统安全性能、提升防御体系的关键环节,对于确保ChatGPT5的安全稳定运行具有重要意义。本文将深入探讨网络攻击与防守之间的动态关系,并提供在网络攻防演练中…

【Leetcode每日一题】 分治 - 颜色分类(难度⭐⭐)(57)

1. 题目解析 题目链接:75. 颜色分类 这个问题的理解其实相当简单,只需看一下示例,基本就能明白其含义了。 2.算法原理 算法思路解析 本算法采用三指针法,将数组划分为三个区域,分别用于存放值为0、1和2的元素。通过…

vivado 设置 VIO 核以执行测量、查看 VIO 核状态

设置 VIO 核以执行测量 您添加到自己的设计中的 VIO 核会显示在“硬件 (Hardware) ”窗口中的目标器件下。如果未显示这些 VIO 核 , 请右键 单击器件并选择“ Refresh Hardware ”。这样将重新扫描 FPGA 或 ACAP 并刷新“ Hardware ”窗口。 注释 &#xff…

【免费】基于SOE算法的多时段随机配电网重构方法

1 主要内容 该程序是完全复现《Switch Opening and Exchange Method for Stochastic Distribution Network Reconfiguration》,也是一个开源代码,网上有些人卖的还挺贵,本次免费分享给大家,代码主要做的是一个通过配电网重构获取…

“面包板”是什么?有啥用?

同学们大家好,今天我们继续学习杨欣的《电子设计从零开始》,这本书从基本原理出发,知识点遍及无线电通讯、仪器设计、三极管电路、集成电路、传感器、数字电路基础、单片机及应用实例,可以说是全面系统地介绍了电子设计所需的知识…

一种范围可调式测径仪 满足生产各规格检测!

摘要:范围可调式测径仪,满足各种外径尺寸的产品检测,囊括产线的所有规格,性价比更高的测径仪。 关键词:测径仪,范围可调测径仪,在线测径仪 引言 生产线中,各种外径尺寸的线材、棒材、管材都有生产&#xff…

【SAP NWDI】服务开启:SLD,CM,CMS(二)

一、启用System Landscape Directory 二、启用 NWDI using CMS

CAN的底层驱动

框架图 拆解链路模型 CAN子系统 can_controller Core 包含协议控制器和接收/发送移位寄存器。它可处理所有 ISO 11898-1: 2015 协议功能,并支持 11 位和 29 位标识符。

一、基础算法-快速排序

1.快速排序 快速排序主要利用了分治的思想,具体步骤为: step1 确定分界点,常用为q[left],q[right],q[mid],也可以是随机的 step2 调整区间,将比分界点小的放左边,大的放右边 step3 利用递归处理左右两端 …

嵌入式Linux串口通信

嵌入式板子就和普通用的单片机比如stm32开发板,51开发板差不多,他们的串口都很类似,都是直接连上然后在PC机器上用串口软件打开就好了。 我使用的嵌入式开发板上面有8个rs485串口,2个rs232串口以及一个网口,刚开始开发…

代码随想录算法训练营第三十七天| LeetCode 738.单调递增的数字、总结

一、LeetCode 738.单调递增的数字 题目链接/文章讲解/视频讲解:https://programmercarl.com/0738.%E5%8D%95%E8%B0%83%E9%80%92%E5%A2%9E%E7%9A%84%E6%95%B0%E5%AD%97.html 状态:已解决 1.思路 如何求得小于等于N的最大单调递增的整数?98&am…

<计算机网络自顶向下> 多路复用与解复用

多路复用/解复用 端口号区分进程到进程多路解复用工作原理 解复用作用:TCP或者UDP实体采用哪些信息,将报文段的数据部分交给正确的socket,从而交给正确的进程主机收到IP数据报 每个数据报有源IP地址和目标地址每个数据报承载一个传输层报文段…