pytorch 今日小知识3——nn.MaxPool3d 、nn.AdaptiveAvgPool3d、nn.ModuleList

news2024/11/27 0:37:54

MaxPool3d — PyTorch 2.2 documentation

假设输入维度(1,2,3,4,4)

maxpool = torch.nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2), padding=(1, 0, 0))

 F 维的 kernel_size 为 2,说明在 F 维的覆盖的 frame 数为 2,也就是每次有 2 个 frame 加入运算。

F 维的 stride 为 2,说明每次的跨度为 2。

  • padding

F 维的 padding 为 1,说明需要在 F 维做 padding,也就是会在输入的输入之前和之后各做 1 个 frame 的padding。

 

2。nn.AdaptiveAvgPool3d()是一个自适应的三维平均池化层,它对输入的立体数据进行降采样,并允许动态地指定输出的目标大小。
不同于nn.AvgPool3d()需要手动指定池化窗口大小,nn.AdaptiveAvgPool3d()直接指定输出的目标大小。它会根据目标输出大小自适应地调整池化窗口的大小,以保证输出的大小和目标大小一致。

import torch
import torch.nn as nn

# 创建一个 AdaptiveAvgPool3d 层,指定目标输出大小为 (2, 2, 2)
pool = nn.AdaptiveAvgPool3d((2, 2, 2))

# 输入数据,假设输入大小为 [batch_size, channels, depth, height, width]
input_data = torch.randn(1, 1, 4, 4, 4)  # 示例输入数据

# 对输入数据进行自适应池化操作
output = pool(input_data)

print(output.shape)

3.在复现代码过程中遇到了 

self.hpp = nn.ModuleList([
    GeMHPP(bin_num=[1]) for i in range(self.m)])

就学习了nn.moduleList这个函数

nn.ModuleList,它是一个储存不同 module,并自动将每个 module 的 parameters 添加到网络之中的容器。你可以把任意 nn.Module 的子类 (比如 nn.Conv2d, nn.Linear 之类的) 加到这个 list 里面,方法和 Python 自带的 list 一样,无非是 extend,append 等操作。但不同于一般的 list,加入到 nn.ModuleList 里面的 module 是会自动注册到整个网络上的,同时 module 的 parameters 也会自动添加到整个网络中

class net4(nn.Module):
    def __init__(self):
        super(net4, self).__init__()
        layers = [nn.Linear(10, 10) for i in range(5)]
        self.linears = nn.ModuleList(layers)

    def forward(self, x):
        for layer in self.linears:
            x = layer(x)
        return x

net = net4()
print(net)

 

 

nn.Sequential内部实现了forward函数,因此可以不用写forward函数。而nn.ModuleList则没有实现内部forward函数

seq = nn.Sequential(
          nn.Conv2d(1,20,5),
          nn.ReLU(),
          nn.Conv2d(20,64,5),
          nn.ReLU()
        )
print(seq)
# Sequential(
#   (0): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1))
#   (1): ReLU()
#   (2): Conv2d(20, 64, kernel_size=(5, 5), stride=(1, 1))
#   (3): ReLU()
# )

#对上述seq进行输入
input = torch.randn(16, 1, 20, 20)
print(seq(input))
#torch.Size([16, 64, 12, 12])

参考

详解PyTorch中的ModuleList和Sequential - 知乎 (zhihu.com)

 3D 池化(MaxPool3D) 和 3D(Conv3d) 卷积详解-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1599849.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Buck变换电路

Buck变换电路 Buck变换电路是最基本的DC/DC拓扑电路,属于非隔离型直流变换器,其输出电压小于输入电压。Buck变换电路具有效率高、输出稳定、控制简单和成本低的优点,广泛应用于稳压电源、光伏发电、LED驱动和能量回收系统。 电路原理 Buck变…

Noisy Student(CVPR 2020)论文解读

paper:Self-training with Noisy Student improves ImageNet classification official implementation:https://github.com/google-research/noisystudent 本文的创新点 本文提出了一种新的半监督方法Noisy Student Training,主要包括三步…

每日一题 — 串联所有单词的子串

30. 串联所有单词的子串 - 力扣(LeetCode) 思路:因为words里面的每一个字符串的长度都是固定的,所以可以将题转换成字符在字符串中的所有异位词 设出哈希表定义left和right进窗口维护count判断出窗口维护count 代码: …

Langchain入门到实战-第三弹

Langchain入门到实战 Langchain中RAG入门官网地址Langchain概述代码演示调用RAG功能更新计划 Langchain中RAG入门 Retrieval Augmented Generation 翻译成中文是“检索增强生成” 官网地址 声明: 由于操作系统, 版本更新等原因, 文章所列内容不一定100%复现, 还要以官方信息…

算法打卡day35

今日任务: 1)343. 整数拆分 2)96.不同的二叉搜索树 3)复习day11 343. 整数拆分 题目链接:343. 整数拆分 - 力扣(LeetCode) 给定一个正整数 n,将其拆分为至少两个正整数的和&#xf…

Vue3 + Element-Plus 使用 Table 插槽时数据未及时更新

Vue3 Element-Plus 使用 Table 插槽时数据未及时更新 问题重现解决方法最终效果 问题重现 这里我已经通过二级分类 id 查询到一级分类和二级分类&#xff0c;但是使用插槽和 v-for 渲染出来还是之前的分类 id&#xff0c;但是一点击表格或者保存代码他又能正常刷新出来。 <…

算法设计与分析实验报告c++实现(矩阵链相乘、投资问题、完全背包问题、数字三角形、最小生成树、背包问题)

一、实验目的 1&#xff0e;加深学生对分治法算法设计方法的基本思想、基本步骤、基本方法的理解与掌握&#xff1b; 2&#xff0e;提高学生利用课堂所学知识解决实际问题的能力&#xff1b; 3&#xff0e;提高学生综合应用所学知识解决实际问题的能力。 二、实验任务 用动态…

1.2MHz,固定频率白光LED驱动器

一、产品概述 TX6216是一款升压转换器&#xff0c;设计用于通过单节锂离子电池驱动多达7个串联的白光LED。 TX6216采用电流模式&#xff0c;固定频率架构来调节LED电流&#xff0c;LED电流通过外部电流检测电阻测量。其低104mV反馈电压可降低功率损耗并提高效率。 TX6216具有…

笔试题1 -- 吃掉字符串中相邻的相同字符(点击消除_牛客网)

吃掉字符串中相邻的相同字符 文章目录 吃掉字符串中相邻的相同字符题目重现解法一&#xff1a;(基于 erase() 函数实现)解法二&#xff1a;&#xff08;利用 栈 辅助实现&#xff09;总结 题目链接&#xff1a; 点击消除_牛客网 题目重现 牛牛拿到了一个字符串。 他每次“点击…

JMeter控制器数据库获取一组数据后遍历输出

目录 1、测试计划中添加Mysql Jar包 2、添加线程组 3、添加 jdbc connection configuration 4、添加JDBC Request&#xff0c;从数据库中获取数据 5.获取数据列表&#xff0c;提取所有goodsName信息 6.通过添加控制器遍历一组数据 6.1 方式一&#xff1a;循环控制器方式 …

Vue3从入门到实战:深度掌握通信插槽slot

slot_默认插槽的概念&#xff1a; 在Vue中&#xff0c;插槽&#xff08;slot&#xff09;是一种用于在组件中插入内容的特殊技术。默认插槽是其中一种类型的插槽&#xff0c;它允许你在组件的模板中指定一个位置&#xff0c;以便在使用组件时插入自定义的内容。 想象一下你有…

Linux中安装seata

Linux中安装seata 一、准备1、环境2、下载3、上传到服务器4、解压 二、配置1、备份配置文件2、导入sql3、修改配置前4、修改配置后5、在nacos中配置 三、使用1、启动2、关闭 一、准备 1、环境 因为要在 nacos 中配置&#xff0c;要求安装并启动 nacos 。可以参考这篇博客。 …

【十一】MyBatis Plus 原理分析

MyBatis Plus 原理分析 摘要 Java EE开发中必不可少ORM框架&#xff0c;目前行业里最流行的orm框架非Mybatis莫属了&#xff0c;而Mybatis框架本身没有提供api实现&#xff0c;所以市面上推出了Mybatis plus系列框架&#xff0c;plus版是mybatis增强工具&#xff0c;用于简化My…

【JAVA基础篇教学】第十二篇:Java中多线程编程

博主打算从0-1讲解下java基础教学&#xff0c;今天教学第十二篇&#xff1a;Java中多线程编程。 多线程编程是利用多个线程同时执行任务来提高程序的效率和性能。在 Java 中&#xff0c;多线程编程可以通过继承 Thread 类或实现 Runnable 接口来实现。下面是一个简单的多线程…

IntelliJ IDEA2024 安装包(亲测可用)

目录 一、软件简介 二、软件下载 一、软件简介 IDEA&#xff08;Integrated Development Environment for Apache&#xff09; 是一款专为 Apache 开发者设计的集成开发环境。该软件提供了丰富的功能和工具&#xff0c;帮助开发者更高效地创建、调试和部署 Apache 项目。 主…

自定义类型: 结构体 (详解)

本文索引 一. 结构体类型的声明1. 结构体的声明和初始化2. 结构体的特殊声明3. 结构体的自引用 二. 结构体内存对齐1. 对齐规则2. 为啥存在对齐?3. 修改默认对齐值 三. 结构体传参四. 结构体实现位段1. 什么是位段?2. 位段的内存分配3. 位段的应用4. 位段的注意事项 ​ 前言:…

计算机系列之操作系统的系统

2、大话操作系统的启动 当按下开机键时&#xff0c;BIOS 就会开始执行 ​ BIOS 就是放在主板上 ROM 里面的一段程序。 ​ ROM Read Only Memory&#xff08;只能读取的内存&#xff09; ​ 所以 BIOS 在出厂的时候就可以直接写死在 ROM 里面。 ​ 每次开机的时候&#xff…

JavaScript 高性能编程 —— 加载和运行

JavaScript 在浏览器中的性能,可认为是开发者所要面对的最重要的可用性问题。此问题因 JavaScript 的阻塞特征而复杂,也就是说,当 JavaScript 运行时其他的事情不能被浏览器处理。 事实上,大多数浏览 器使用单进程处理 UI 更新和 JavaScript 运行等多个任务,而同一时间只能…

Python --- 在python中安装NumPy,SciPy和Matplotlib(Windows平台)

在python中安装NumPy&#xff0c;SciPy和Matplotlib(Windows平台) NumPy NumPy是Python的一个最常用最基本的扩展程序库之一&#xff0c;主要用于矩阵运算或数组计算。很多其他的python库都要依赖于NumPy才能跑。 NumPy的发展史&#xff1a; Matrix-sig 1995年&#xff0c;特殊…

设定延迟任务和定时任务并优化定时任务

一丶设定延时任务 1.设定延迟任务要求如下 ①在系统中建立easylee用户&#xff0c;设定其密码为easylee ②延迟任务由root用户建立 ③要求在5小时后备份系统中的用户信息文件到/backup中 ④确保延迟任务是使用非交互模式建立 ⑤确保系统中只有root用户和easylee用户可以执…