文献速递:深度学习肝脏肿瘤诊断---基于深度学习的肝细胞结节性病变在整片组织病理图像上的分类

news2024/9/23 3:17:27

Title 

题目

Deep Learning-Based Classification of Hepatocellular Nodular Lesions on Whole-Slide Histopathologic Images

基于深度学习的肝细胞结节性病变在整片组织病理图像上的分类

Background 

背景

Hepatocellular nodular lesions (HNLs) constitute a heterogeneous group of disorders. Differential diagnosis among these lesions, especially high-grade dysplasticnodules (HGDNs) and well-differentiated hepatocellular carci noma (WD-HCC), can be challenging, let alone biopsy speci mens. We aimed to develop a deep learning system to solve these puzzles, improving the histopathologic diagnosis of HNLs (WD-HCC, HGDN, low-grade DN, focal nodular hyperplasia,hepatocellular adenoma), and background tissues (nodularcirrhosis, normal liver tissue).

肝细胞结节性病变(HNLs)构成了一个异质性疾病群。这些病变之间的鉴别诊断,特别是高级别发育不良结节(HGDNs)与良性分化的肝细胞癌(WD-HCC),可能具有挑战性,更不用说活检样本了。我们旨在开发一个深度学习系统来解决这些难题,以提高HNLs(WD-HCC、HGDN、低级别DN、局灶性结节性增生、肝细胞腺瘤)以及背景组织(结节性肝硬化、正常肝组织)的组织病理诊断。

Conclusions

结论

We first developed a deep learning diagnostic model for HNLs, which performed well and contributed to enhancing the diagnosis rate of early HCC and risk stratification of patients with HNLs. Furthermore, HnAIM had significant ad vantages in patch-level recognition, with important diagnostic implications for fragmentary or scarce biopsy specimens.

我们首次开发了一个用于HNLs的深度学习诊断模型,该模型表现良好,并有助于提高早期HCC的诊断率和HNLs患者的风险分级。此外,HnAIM在补丁层面识别方面具有显著优势,对于零碎或稀缺的活检样本具有重要的诊断意义。

Results

结果

We obtained 213,280 patches from 1115 whole-slide images of 738 patients. An optimal model was finally chosen based on F1 score and area under the curve value, named hepatocellular-nodular artificial intelligence model (HnAIM), with the overall 7-category area under the curve of 0.935 in the independent external validation cohort. For biopsy specimens, the agreement rate with sub specialists’ majority opinion was higher for HnAIM than 9 pa thologists on both patch level and whole-slide images level.

我们从738名患者的1115张整片幻灯片图像中获得了213,280个补丁。基于F1得分和曲线下面积值,最终选择了一个最优模型,命名为肝细胞结节性人工智能模型(HnAIM),在独立外部验证队列中,7类别的曲线下面积为0.935。对于活检样本,HnAIM与亚专家多数意见的一致率高于9名病理学家,无论是在补丁层面还是整片幻灯片图像层面。

Method

方法

The samples consisting of surgical and biopsy specimens were collected from 6 hospitals. Each specimen was reviewed by 2 to 3 subspecialists. Four deep neural networks (ResNet50, InceptionV3, Xception,and the Ensemble) were used. Their performances were eval uated by confusion matrix, receiver operating characteristic curve, classification map, and heat map. The predictive efficiency of the optimal model was further verified by comparing with that of 9 pathologists.

样本包括手术和活检标本,这些标本收集自6家医院。每个标本由2至3名亚专科医生审核。使用了四个深度神经网络(ResNet50、InceptionV3、Xception和集成网络)。它们的性能通过混淆矩阵、接收者操作特征曲线、分类图和热图进行评估。通过与9名病理医生的诊断结果进行比较,进一步验证了最优模型的预测效率。

Figure

图片

Figure 1. Data, study design, and HnAIM classification framework. Six independent data sets (Headquarters, Lingnan andYuedong Hospital of SYSUTH, SYSUFH, FSFPH, and GZFPH) were used in this study. (A) The Headquarters and YuedongHospital of SYSUTH data sets were used for developing a 7-category discriminative model, while the other 4 data sets wereused for the external testing. (B) The distribution of the samples for each type of liver nodule in model development (left) andindependent external validation (right). (C) Flow chart of the study. The data sets of the 7 categories were divided into thetraining (70%), validation (15%), and testing (15%) sets. Then, ROIs were labeled with green masks for each category. Patcheswere extracted from ROIs by OpenSlide library at  40 magnification with a size of 1024  1024. The training set was used totrain the ensemble model based on 3 basic models, while the validation set was used to fine-tune superparameters, such as learning rate, and the testing set used to evaluate models’ performances by confusion matrix, ROC curve, WSI-level classi-fication map, and patch-level heat map. Patches of liver biopsy specimens were predicted by the optimal model and areshown using a histogram, while the model’s referral decisions were compared with the ones made by different levels ofpathologists.

图1. 数据、研究设计和HnAIM分类框架。本研究使用了六个独立数据集(总部、岭南及SYSUTH的粤东医院、SYSUFH、FSFPH和GZFPH)。(A) 总部和SYSUTH的粤东医院数据集用于开发7类鉴别模型,而其他四个数据集用于外部测试。(B) 模型开发中(左)和独立外部验证中(右)各类型肝结节样本的分布。(C) 研究流程图。7类数据集被划分为训练集(70%)、验证集(15%)和测试集(15%)。然后,每个类别的感兴趣区域(ROIs)用绿色遮罩标记。通过OpenSlide库以40倍放大从ROIs提取1024×1024大小的补丁。训练集用于基于三个基础模型训练集成模型,验证集用于调整超参数,如学习率,测试集用于通过混淆矩阵、ROC曲线、WSI级分类图和补丁级热图评估模型性能。肝活检标本的补丁由最优模型预测,并通过直方图显示,而模型的转诊决定与不同级别的病理医生所做的决定进行比较。

图片

Figure 2. Performance of deep learning models. (A) Classification results are shown by confusion matrices on the internal testing set for Resnet50, Inception V3, Xception, and the Ensemble model. Numbers represent the number of patches classified correctly (diagonal) and incorrectly (off the diagonal). (B) The ROC curve and the AUC value on the internal testing set for models of Resnet50 (black line), Inception V3 (blue line), Xception (green line), and Ensemble (red line). The Xception and the Ensemble models both performed the best, with AUC values of 0.9991, indicating models were trained with high accuracy. (C) The ROC curve and AUC value on the independent external validation using the Ensemble model (HnAIM) in FSFPH, SYSUFH, GZFPH, and the entire external data set.

图2. 深度学习模型的性能。(A) 在内部测试集上,Resnet50、Inception V3、Xception和集成模型的分类结果通过混淆矩阵显示。数字代表正确分类(对角线上)和错误分类(对角线外)的补丁数量。(B) 在内部测试集上,Resnet50(黑线)、Inception V3(蓝线)、Xception(绿线)和集成模型(红线)的ROC曲线和AUC值。Xception和集成模型的表现最佳,AUC值为0.9991,表明模型具有高精度的训练。(C) 使用集成模型(HnAIM)在FSFPH、SYSUFH、GZFPH和整个外部数据集上的独立外部验证的ROC曲线和AUC值。

图片

Figure 3. WSI-level panoramicclassification map of surgicalsample: (A) WD-HCC, (B)HGDN, (C), LDN, (D), FNH, and(E) HCA. (Left) Original WSIs(original magnification  0.4).(Middle) Classification mapswere constructed frommodel’s predictions of corresponding patches. Colorsfrom blue to red meantdifferent liver lesions. For NC,LGDN, HGDN, and WDHCC,gradually deepening coloreven indicated increased degree of malignancy (labels: 2,5–7). The diagnostic labelswere as follows: 0 for background, 1 for NNL, 2 for NC, 3for HCA, 4 for FNH, 5 forLGDN, 6 for HGDN, and 7 forWDHCC. (Right) Pie charts

quantitatively show the percentage of different categoriesin each WSI.

图3. 外科样本的WSI级全景分类图:(A) WD-HCC,(B) HGDN,(C) LDN,(D) FNH,和 (E) HCA。(左) 原始WSIs(原始放大倍数0.4)。(中) 分类图根据模型对应补丁的预测构建。颜色从蓝色到红色表示不同的肝脏病变。对于NC、LGDN、HGDN和WDHCC,颜色的逐渐加深甚至表示恶性程度的增加(标签:2,5-7)。诊断标签如下:0代表背景,1代表NNL,2代表NC,3代表HCA,4代表FNH,5代表LGDN,6代表HGDN,7代表WDHCC。(右) 饼图定量显示每个WSI中不同类别的百分比。

图片

Figure 4. Performance of HnAIM in biopsy specimens and comparison with pathologists. (A) Patch-level histogram of biopsy specimens shows the model’s predictions for 7 categories, with a focus on cell morphologic features. The category with the largest proportion was regarded as the final classification. Agreement rates with the majority opinion of subspecialists for the HnAIM and pathologists (3 each for junior, intermediate, and senior pathologist) on 7 categories across (B) all 961 patches and (C) 30 WSIs of biopsy specimens. To represent the average level of each group, the agreement rate was shown as the mean value across 3 pathologists. The error bars represent the 95% CIs. Potential reasons for disagreements among pathologists with HnAIM may include inherent uncertainty in the 2-dimensional interpretation of a 3-dimensional specimen, ambiguity in diagnostic guidelines, the limited number of tissue samples, and cognitive factors such as anchoring.

图4. HnAIM在活检标本中的表现及与病理医生的比较。(A) 活检标本的补丁级直方图显示了模型对7个类别的预测,重点关注细胞形态特征。占比最大的类别被视为最终分类。HnAIM与亚专家多数意见的一致率以及(B)所有961个补丁和(C)30个活检样本WSI中7个类别的病理医生(初级、中级和高级各3名)的一致率。为代表每组的平均水平,一致率以3名病理医生的平均值显示。误差条表示95%置信区间。病理医生与HnAIM之间意见不一的潜在原因可能包括对三维标本二维解读的固有不确定性、诊断指南的模糊性、组织样本数量有限以及认知因素如锚定效应。

Table

图片

Table 1.Seven-Category Agreement With Subspecialists’ Majority Opinion of 9 Pathologists and Hepatocellular-NodularArtificial Intelligence Model Based on Patches and Whole-Slide Images of 30 Liver Biopsy Specimens

表1. 基于30个肝活检标本的补丁和整片图像的九名病理学家和肝细胞结节性人工智能模型与亚专家多数意见的七类别一致性

图片

Table 2.Lesion Characteristics of Patients With Indefinite Diagnoses after 3 Independent Reviews

表2. 经过三次独立审查后,诊断不确定的患者的病变特征

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1596534.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Offer必备算法26_BFS解决最短路_四道力扣题(由易到难)

目录 ①力扣1926. 迷宫中离入口最近的出口 解析代码 ②力扣433. 最小基因变化 解析代码 ③力扣127. 单词接龙 解析代码 ④力扣675. 为高尔夫比赛砍树 解析代码 本篇完。 ①力扣1926. 迷宫中离入口最近的出口 1926. 迷宫中离入口最近的出口 难度 中等 给你一个 m x …

SpringBoot学习(二)WEB开发

文章目录 WEB开发WebMvcAutoConfiguration原理生效条件效果WebMvcConfigurer接口静态资源源码规则EnableWebMvcConfiguration规则容器中WebMvcConfigurer配置底层行为 Web场景自动配置默认效果 静态资源默认规则静态资源映射静态资源缓存欢迎页Favion 自定义静态资源规则配置方…

PINet车道线检测+YOLOv8视频目标检测

前言: 本文主要目的是实现在PINet车道线检测的代码中嵌入YOLOv8的目标检测模块,具体效果如图所示: 在学习和使用YOLOv8进行目标检测时,感觉可以和最近研究的车道线检测项目结合起来,形成一套如上图所示的视频效…

2024/4/14周报

文章目录 摘要Abstract文献阅读题目创新点CROSSFORMER架构跨尺度嵌入层(CEL)CROSSFORMER BLOCK长短距离注意(LSDA)动态位置偏置(DPB) 实验 深度学习CrossFormer背景维度分段嵌入(DSW&#xff09…

【图像分类】基于深度学习的轴承和齿轮识别(ResNet网络)

写在前面: 首先感谢兄弟们的关注和订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。(专栏订阅用户订阅专栏后免费提供数据集和源码一份,超级VIP用户不在服务范围之内,不想订阅专栏的兄弟们可以私信…

如何远程连接电脑?

远程连接电脑是一种技术,能够使用户在不同地点的电脑之间建立连接,实现互相访问和控制的功能。这项技术为我们提供了便利和效率,使得随时随地的协同办公、异地统一管理和远程数据采集管理成为可能。 【天联】的使用场景 远程连接电脑的应用非…

SAP 转储单库存可用性检查详解

客户需求在下转储单以及公司间STO时候检查发货方是否库存够,如果有库存则可以创建,没有则不让创建。以免在DN过账时候才提示库存不够,把检查库存是否充足前移。 我们知道销售单是有可用性检查功能的,那么采购转储单是否也有同样功能呢? 可用性检查控制可理解为检查组和检…

微信小程序认证指南及注意事项

如何认证小程序? 一、操作步骤 登录小程序后台: https://mp.weixin.qq.com/ (点击前往) 找到设置,基本设置; 在【基本信息】处有备案和认证入口; 点击微信认证的【去认证】; 按照步骤指引一步步填写信息&#xff…

使用阿里云试用Elasticsearch学习:Search Labs Tutorials 搭建一个flask搜索应用

文档:https://www.elastic.co/search-labs/tutorials/search-tutorial https://github.com/elastic/elasticsearch-labs/tree/main/example-apps/search-tutorial Full-Text Search

盲人出行安全保障:科技革新助力无障碍生活新纪元

作为一名资深记者,我有幸见证了一场科技如何深刻改变视障群体生活的壮丽篇章。在这场变革中,盲人出行安全保障成为焦点,一款融合先进科技与人文关怀的辅助应用正以前所未有的力量,帮助盲人朋友们打破传统束缚,实现安全…

每日OJ题_BFS解决最短路④_力扣675. 为高尔夫比赛砍树

目录 力扣675. 为高尔夫比赛砍树 解析代码 力扣675. 为高尔夫比赛砍树 675. 为高尔夫比赛砍树 难度 困难 你被请来给一个要举办高尔夫比赛的树林砍树。树林由一个 m x n 的矩阵表示, 在这个矩阵中: 0 表示障碍,无法触碰1 表示地面&…

【大语言模型】基础:余弦相似度(Cosine similarity)

余弦相似度是一种用来确定两个向量之间相似性的度量。它在数据科学、信息检索和自然语言处理(NLP)等多个领域被广泛使用,用于度量在多维空间中两个向量之间角度的余弦。这个指标捕捉的是方向上的相似性而非大小,使其非常适合比较长…

专业SEO优化指南:设置网站关键词的详细步骤

在网站SEO优化的过程中,关键词的设置是提升网站排名的关键步骤之一。那么,作为一名专业的SEO人员,如何有效地进行关键词设置呢?以下是一些详细的步骤: 1. 确定网站的核心关键词。 这需要深入理解网站的主题或产品。通…

结合创新!ResNet+Transformer,高性能低参数,准确率达99.12%

今天给各位介绍一个发表高质量论文的好方向:ResNet结合Transformer。 ResNet因其深层结构和残差连接,能够有效地从图像中提取出丰富的局部特征。同时,Transformer的自注意力机制能够捕捉图像中的长距离依赖关系,为模型提供全局上…

GPT人工智能在线网页版大全

平民不参与内测,还能使用 ChatGPT 吗? 自去年 ChatGPT 爆红以来,关于它的消息铺天盖地。如果你真的想使用它,途径有很多。除了官方网站外国内还有许多 ChatGPT 的镜像网站,其中不乏免费的 3.5 版本。虽然有些网站需要…

byobu

byobu 终端多路复用器 一、byobu 安装二、byobu 使用三、其他终端多路复用器四、ssh byobu 远程协作 系统环境: linux(ubuntu,debian,kali) 一、byobu 安装 byobu 是包装过的tmux #sudo apt install tmux sudo apt install byobubyobu二、byobu 使用 创建窗口: Ctrl a c…

秋招复习笔记——八股文部分:网络基础

TCP/IP 网络模型 应用层 最上层的,也是我们能直接接触到的就是应用层(Application Layer),我们电脑或手机使用的应用软件都是在应用层实现。那么,当两个不同设备的应用需要通信的时候,应用就把应用数据传…

使用 Tranformer 进行概率时间序列预测实战

使用 Transformers 进行概率时间序列预测实战 通常,经典方法针对数据集中的每个时间序列单独拟合。然而,当处理大量时间序列时,在所有可用时间序列上训练一个“全局”模型是有益的,这使模型能够从许多不同的来源学习潜在的表示。…

写一个uniapp的登录注册页面

一、效果图 二、代码 1、登录 &#xff08;1&#xff09;页面布局代码 <template><view class"normal-login-container"><view class"logo-content align-center justify-center flex"><image class"img-a" src"/s…

Maven超详细使用

定义 是一款用于管理和构建java项目的工具 作用 1. 依赖管理 2. 统一项目结构 3. 项目构建 项目目录结构 POM 项目对象模型 (Project Object Model) POM (Project Object Model) &#xff1a;指的是项目对象模型&#xff0c;用来描述当前的maven项目。 仓库 本地仓库&#…