分布式唯一ID的几种生成方案,一次性全掌握!

news2025/1/18 9:57:46

上一篇文章,我们聊了一下分库分表相关的一些基础知识,具体可以参见:《用真实业务场景告诉你,高并发下如何设计数据库架构?》。

这篇文章,我们就接着分库分表的知识,来具体聊一下全局唯一id如何生成。


在分库分表之后你必然要面对的一个问题,就是id咋生成?

因为要是一个表分成多个表之后,每个表的id都是从1开始累加自增长,那肯定不对啊。

举个例子,你的订单表拆分为了1024张订单表,每个表的id都从1开始累加,这个肯定有问题了!

你的系统就没办法根据表主键来查询订单了,比如id = 50这个订单,在每个表里都有!

所以此时就需要分布式架构下的全局唯一id生成的方案了,在分库分表之后,对于插入数据库中的核心id,不能直接简单使用表自增id,要全局生成唯一id,然后插入各个表中,保证每个表内的某个id,全局唯一。

比如说订单表虽然拆分为了1024张表,但是id = 50这个订单,只会存在于一个表里。

那么如何实现全局唯一id呢?有以下几种方案。


(1)方案一:独立数据库自增id

这个方案就是说你的系统每次要生成一个id,都是往一个独立库的一个独立表里插入一条没什么业务含义的数据,然后获取一个数据库自增的一个id。拿到这个id之后再往对应的分库分表里去写入。

比如说你有一个auto_id库,里面就一个表,叫做auto_id表,有一个id是自增长的。

那么你每次要获取一个全局唯一id,直接往这个表里插入一条记录,获取一个全局唯一id即可,然后这个全局唯一id就可以插入订单的分库分表中。

这个方案的好处就是方便简单,谁都会用。缺点就是单库生成自增id,要是高并发的话,就会有瓶颈的,因为auto_id库要是承载个每秒几万并发,肯定是不现实的了。


(2)方案二:uuid

这个每个人都应该知道吧,就是用UUID生成一个全局唯一的id。

好处就是每个系统本地生成,不要基于数据库来了

不好之处就是,uuid太长了,作为主键性能太差了,不适合用于主键。

如果你是要随机生成个什么文件名了,编号之类的,你可以用uuid,但是作为主键是不能用uuid的。


(3)方案三:获取系统当前时间

这个方案的意思就是获取当前时间作为全局唯一的id。

但是问题是,并发很高的时候,比如一秒并发几千,会有重复的情况,这个是肯定不合适的。

一般如果用这个方案,是将当前时间跟很多其他的业务字段拼接起来,作为一个id,如果业务上你觉得可以接受,那么也是可以的。

你可以将别的业务字段值跟当前时间拼接起来,组成一个全局唯一的编号,比如说订单编号:时间戳 + 用户id + 业务含义编码


(4)方案四:snowflake算法的思想分析

snowflake算法,是twitter开源的分布式id生成算法。

其核心思想就是:使用一个64 bit的long型的数字作为全局唯一id,这64个bit中,其中1个bit是不用的,然后用其中的41 bit作为毫秒数,用10 bit作为工作机器id,12 bit作为序列号。

给大家举个例子吧,比如下面那个64 bit的long型数字,大家看看

在这里插入图片描述

上面第一个部分,是1个bit:0,这个是无意义的

上面第二个部分是41个bit:表示的是时间戳

上面第三个部分是5个bit:表示的是机房id,10001

上面第四个部分是5个bit:表示的是机器id,1 1001

上面第五个部分是12个bit:表示的序号,就是某个机房某台机器上这一毫秒内同时生成的id的序号,0000 00000000


  • 1 bit:是不用的,为啥呢?

    • 因为二进制里第一个bit为如果是1,那么都是负数,但是我们生成的id都是正数,所以第一个bit统一都是0
  • 41 bit:表示的是时间戳,单位是毫秒。

    • 41 bit可以表示的数字多达2^41 - 1,也就是可以标识2 ^ 41 - 1个毫秒值,换算成年就是表示69年的时间。
  • 10 bit:记录工作机器id,代表的是这个服务最多可以部署在2^10台机器上,也就是1024台机器。

    • 但是10 bit里5个bit代表机房id,5个bit代表机器id。意思就是最多代表2 ^ 5个机房(32个机房),每个机房里可以代表2 ^ 5个机器(32台机器)。
  • 12 bit:这个是用来记录同一个毫秒内产生的不同id。

    • 12 bit可以代表的最大正整数是2 ^ 12 - 1 = 4096,也就是说可以用这个12bit代表的数字来区分同一个毫秒内的4096个不同的id

简单来说,你的某个服务假设要生成一个全局唯一id,那么就可以发送一个请求给部署了snowflake算法的系统,由这个snowflake算法系统来生成唯一id。

这个snowflake算法系统首先肯定是知道自己所在的机房和机器的,比如机房id = 17,机器id = 12。

接着snowflake算法系统接收到这个请求之后,首先就会用二进制位运算的方式生成一个64 bit的long型id,64个bit中的第一个bit是无意义的。

接着41个bit,就可以用当前时间戳(单位到毫秒),然后接着5个bit设置上这个机房id,还有5个bit设置上机器id。

最后再判断一下,当前这台机房的这台机器上这一毫秒内,这是第几个请求,给这次生成id的请求累加一个序号,作为最后的12个bit。

最终一个64个bit的id就出来了,类似于:

在这里插入图片描述

这个算法可以保证说,一个机房的一台机器上,在同一毫秒内,生成了一个唯一的id。可能一个毫秒内会生成多个id,但是有最后12个bit的序号来区分开来。

下面我们简单看看这个snowflake算法的一个代码实现,这就是个示例,大家如果理解了这个意思之后,以后可以自己尝试改造这个算法。

总之就是用一个64bit的数字中各个bit位来设置不同的标志位,区分每一个id。


(5)snowflake算法的代码实现

public class IdWorker {

   private long workerId; // 这个就是代表了机器id
   private long datacenterId; // 这个就是代表了机房id
   private long sequence; // 这个就是代表了一毫秒内生成的多个id的最新序号

   public IdWorker(long workerId, long datacenterId, long sequence) {

       // sanity check for workerId
       // 这儿不就检查了一下,要求就是你传递进来的机房id和机器id不能超过32,不能小于0
       if (workerId > maxWorkerId || workerId < 0) {
           
           throw new IllegalArgumentException(
               String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));
       }
       
       if (datacenterId > maxDatacenterId || datacenterId < 0) {
       
           throw new IllegalArgumentException(
               String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));
       }

       this.workerId = workerId;
       this.datacenterId = datacenterId;
       this.sequence = sequence;
   }

   private long twepoch = 1288834974657L;

   private long workerIdBits = 5L;
   private long datacenterIdBits = 5L;
   
   // 这个是二进制运算,就是5 bit最多只能有31个数字,也就是说机器id最多只能是32以内
   private long maxWorkerId = -1L ^ (-1L << workerIdBits);

   // 这个是一个意思,就是5 bit最多只能有31个数字,机房id最多只能是32以内
   private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
   private long sequenceBits = 12L;

   private long workerIdShift = sequenceBits;
   private long datacenterIdShift = sequenceBits + workerIdBits;
   private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
   private long sequenceMask = -1L ^ (-1L << sequenceBits);

   private long lastTimestamp = -1L;

   public long getWorkerId(){
       return workerId;
   }

   public long getDatacenterId() {
       return datacenterId;
   }

   public long getTimestamp() {
       return System.currentTimeMillis();
   }

   // 这个是核心方法,通过调用nextId()方法,让当前这台机器上的snowflake算法程序生成一个全局唯一的id
   public synchronized long nextId() {

       // 这儿就是获取当前时间戳,单位是毫秒
       long timestamp = timeGen();

       if (timestamp < lastTimestamp) {
           System.err.printf(
               "clock is moving backwards. Rejecting requests until %d.", lastTimestamp);
           throw new RuntimeException(
               String.format("Clock moved backwards. Refusing to generate id for %d milliseconds",
                             lastTimestamp - timestamp));
       }

       
       // 下面是说假设在同一个毫秒内,又发送了一个请求生成一个id
       // 这个时候就得把seqence序号给递增1,最多就是4096
       if (lastTimestamp == timestamp) {
       
           // 这个意思是说一个毫秒内最多只能有4096个数字,无论你传递多少进来,
           //这个位运算保证始终就是在4096这个范围内,避免你自己传递个sequence超过了4096这个范围
           sequence = (sequence + 1) & sequenceMask;

           if (sequence == 0) {
               timestamp = tilNextMillis(lastTimestamp);
           }
       
       } else {
           sequence = 0;
       }

       // 这儿记录一下最近一次生成id的时间戳,单位是毫秒
       lastTimestamp = timestamp;

       // 这儿就是最核心的二进制位运算操作,生成一个64bit的id
       // 先将当前时间戳左移,放到41 bit那儿;将机房id左移放到5 bit那儿;将机器id左移放到5 bit那儿;将序号放最后12 bit
       // 最后拼接起来成一个64 bit的二进制数字,转换成10进制就是个long型
       return ((timestamp - twepoch) << timestampLeftShift) |
               (datacenterId << datacenterIdShift) |
               (workerId << workerIdShift) | sequence;
   }

   private long tilNextMillis(long lastTimestamp) {
       
       long timestamp = timeGen();
       
       while (timestamp <= lastTimestamp) {
           timestamp = timeGen();
       }
       return timestamp;
   }

   private long timeGen(){
       return System.currentTimeMillis();
   }

   //---------------测试---------------
   public static void main(String[] args) {
       
       IdWorker worker = new IdWorker(1,1,1);
       
       for (int i = 0; i < 30; i++) {
           System.out.println(worker.nextId());
       }
   }
}

(6)snowflake算法一个小小的改进思路

其实在实际的开发中,这个snowflake算法可以做一点点改进。

因为大家可以考虑一下,我们在生成唯一id的时候,一般都需要指定一个表名,比如说订单表的唯一id。

所以上面那64个bit中,代表机房的那5个bit,可以使用业务表名称来替代,比如用00001代表的是订单表。

因为其实很多时候,机房并没有那么多,所以那5个bit用做机房id可能意义不是太大。

这样就可以做到,snowflake算法系统的每一台机器,对一个业务表,在某一毫秒内,可以生成一个唯一的id,一毫秒内生成很多id,用最后12个bit来区分序号对待。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/158570.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Flutter 基础-上

一、初始化项目 Material Design (Google 推出的前端UI 解决方案) 官网: https://www.material.io/中文网: https://material-io.cn/ Flutter 中一切内容都是组件(Widget) 无状态组件(StatelessWidget)有状态组件(StatefulWidget) 二、app结构 MaterialApp title (任务管理器…

【VScode技巧】:platformio部署ESP32Cam开发板

学习目标&#xff1a; 前几天用Arduino开发了ESP32Cam&#xff0c;实现了人脸识别的功能&#xff0c;今天无聊想了想ESP32Can也可以在VScode的Platformio中使用&#xff0c;于是就试着配置了一下。以下是配置环境的过程&#xff0c;谢谢大家观看。 正所谓工欲善其事&#xff0c…

【零基础】学python数据结构与算法笔记10

文章目录前言57.链表介绍58.链表的创建和遍历59.链表的插入和删除60.双链表61.链表总结62.哈希表62.哈希表实现64.哈希表应用总结前言 学习python数据结构与算法&#xff0c;学习常用的算法&#xff0c; b站学习链接 57.链表介绍 链表是由一系列节点组成的元素集合。每个节点…

React配置文件(五) 配置less

代码如下: module.exports { webpack: override( addLessLoader({ lessOptions: { javascriptEnabled: true, modifyVars: { primary-color: #1DA57A }, }, }), adjustStyleLoaders(({ use: [, , postcss] }) > { const postcssOptions postcss.options postcss.options …

SEO初学者如何快速做好 SEO 优化?seo数据查询

昨天给大家介绍了seo的意义和重要性&#xff0c;今天让我们一起看看10个基本的SEO初学者技巧&#xff0c;如何优化网站以增加流量。 1. 研究关键词并使用尾词 关键词在SEO中起着重要的作用。关键字表明了你文章的主要主题&#xff0c;它使人们有可能在网上搜索感兴趣的主题时找…

RK3588平台开发系列讲解(日志篇)RK3588 syslog的使用

平台内核版本安卓版本RK3588Linux 5.10Android 12文章目录 一、查看是否启用syslog.conf二、配置启用syslog.conf1、配置busybox2、添加配置文件3、编译buildroot烧录三、验证1、编写测试代码2、查看日志文件3、运行测试程序沉淀、分享、成长,让自己和他人都能有所收获!😄 …

SpringCloudAlibaba入门(2023版)

先知 架构图一览 创建Serve端 新建项目 配置文件 application.yaml server:port: 8080# Eureka配置 eureka:instance:## Eureka实例的名称hostname: localhostAclient:# false表示自己端就是注册中心&#xff0c;职责就是维护服务实例&#xff0c;并不需要去检查服务fetch-r…

Kafka-eagle 安装教程

参考资料&#xff1a; 参考视频 Kafka-eagle官网 解释&#xff1a;Kafka-eagle 后来更名为 EFAK &#xff0c;所以打开官网会显示EFAK 环境准备&#xff1a; 要有本服务器可访问的MySQL服务&#xff0c;远程的请检查是否已经开启了MySQL远程访问&#xff0c;如果没有则需…

1.12 PWM实验

蜂鸣器--------TIM4 CH1/PB6 风扇-----------TIM1 CH1/PE9 马达-----------TIM16 CH1/PF6 一.PWM框图 RCC&#xff1a;使能GPIOB GPIOB&#xff1a;设置复用功能 TIM4:产生方波 二.分析RCC 确定总线&#xff0c;使能GPIOB和TIM4&#xff0c;GPIOE和TIM1,GPIO和TIM16 三.分…

【C++11】右值引用和移动语义

目录 一、左值 vs 右值 二、左值引用vs 右值引用 三、右值引用使用场景和意义 1. 左值引用的使用场景 2. 左值引用的短板 3. 右值引用和移动语义解决上述问题 四、右值引用引用左值的使用场景 五、完美转发 1. 模板中的&& 万能引用 2. std::forward 完美转发…

windows排查问题常用命令

查看JAVA进程占用PID: wmic process where caption"java.exe" get processid,caption,commandline /value查看进程端口信息&#xff1a;netstat -ano 或者 netstat -ano|findstr "8080" 或查看成功建立连接的&#xff1a;netstat -ano | findstr “ESTABLI…

C语言中的字符指针

目录1.字符指针指向一个字符2.字符指针指向一个字符串3.例题1.字符指针指向一个字符 int main() {char ch w;char *pc &ch;return 0; }将一个char类型的变量的地址放到一个char*类型的指针里去&#xff0c;这里的char*ps就是字符指针 在这里的字符指针与之前的整形指针等…

巧用gitbash的scp命令实现跨网段的文件直传

背景 嵌入式开发的工作流一般是这样的&#xff0c;程序员通过Windows电脑登陆Linux服务器&#xff0c;在服务器上编译出二进制文件后&#xff0c;先将文件scp到本地&#xff0c;然后再scp到Linux开发板&#xff0c;如下图所示 这样做需要执行两次scp命令&#xff0c;能否只执…

Golang cgo:如何在Go代码中调用C语言代码?

如何在Go代码中调用C语言代码&#xff1f; Go语言是通过自带的一个叫CGO的工具来支持C语言函数调用&#xff0c;同时我们可以用Go语言导出C动态库接口给其它语言使用。 方式一、直接在 Go 代码中写入 C 代码 检查是否开启cgo工具 首先&#xff0c;要查看是否已经开启cgo工具…

树状数组+例题

一、树状数组的定义 树状数组 或 二元索引树&#xff08;Binary Indexed Tree&#xff09;&#xff0c;现多用于高效计算数列的前缀和&#xff0c; 区间和。它可以以 log(n)log(n)log(n) 的时间得到任意前缀和&#xff0c;也支持在log(n)log(n)log(n)时间内支持动态单点值的修改…

Spring简介与使用

什么是spring spring是一个开源的框架&#xff0c;里面有一系列功能&#xff0c;可以使我们的开发变得更为轻松 简单来说&#xff0c;spring是包含众多工具方法的IoC容器 所谓容器&#xff0c;就是盛放东西的事务&#xff0c;例如我们的ArrayList就是数据存储的容器&#xff…

数据库——排序与分页

目录 排序数据 单列排序 多列排列 分页 分页原理 优点 MySQL 8.0新特性 排序数据 使用 ORDER BY 子句排序ASC&#xff08;ascend&#xff09;: 升序DESC&#xff08;descend&#xff09;:降序ORDER BY 子句在SELECT语句的结尾。 单列排序 SELECT employee_id,last_name…

【Linux】项目自动化构建工具-make与Makefile的简单使用(模拟实现进度条)

目  录1 make与Makefile使用2 模拟实现进度条前言&#xff1a; 会不会编写Makefile&#xff0c;从侧面说明了一个人是否具备完成大型工程的能力。一个工程中的源文件不计其数&#xff0c;按类型、功能、模块分别放在若干个目录中&#xff0c;Makefile定义了一系列的规则来指定…

使用 EMQX Cloud 桥接数据到 GCP Pub/Sub

前不久&#xff0c;Google 宣布其旗下的 GCP IoT Core 即将在 2023 年 8 月 16 日停止提供服务。这意味着大量使用 GCP IoT Core 的用户可能需要将他们的 IoT 应用迁移到其他物联网云服务。除了云服务的迁移&#xff0c;很多用户也在直接利用谷歌云生态&#xff0c;使用 GCP 上…

Docker部署 Harbor

系列文章目录 Docker部署 registry Docker搭建 svn Docker部署 Harbor Docker 部署SQL Server 2017 Docker 安装 MS SqlServer Docker部署 Oracle12c Docker部署Jenkins Docker部署 Harbor系列文章目录前言一、Harbor安装有3种方式二、安装步骤1. 从github官方地址下载安装包2…