C++ GDAL提取多时相遥感影像中像素随时间变化的数值数组

news2025/2/22 22:04:07

本文介绍基于C++语言GDAL库,批量读取大量栅格遥感影像文件,并生成各像元数值的时间序列数组的方法。

  首先,我们来明确一下本文所需实现的需求。现在有一个文件夹,其中包含了很多不同格式的文件,如下图所示。

  其中,我们首先需要遍历这一文件夹,遴选出其中所有类型为.bmp格式的栅格遥感影像文件(一共有6个),并分别读取文件(已知这些遥感影像的行数、列数都是一致的);随后,将不同遥感影像同一个位置的像素的数值进行分别读取,并存储在一个数组中。例如,最终我们生成的第一个数组,其中共有6个元素,分别就是上图所示文件夹中6景遥感影像各自(0,0)位置的像元数值;生成的第二个数组,其中也是6个元素,分别就是6景遥感影像各自(1,0)位置的像元数值,以此类推。其中,显然我们得到的数组个数,就是遥感影像像元的个数。此外,这里6景遥感影像的排序,是按照文件名称的升序来进行的。

  明确了具体需求,接下来就可以开始代码的实践。其中,本文分为两部分,第一部分为代码的分段讲解,第二部分为完整代码。

  此外,本文是基于GDAL库来实现栅格数据读取的;具体GDAL库的配置方法大家可以参考文章在Visual Studio中部署GDAL库的C++版本(包括SQLite、PROJ等依赖)。

1 代码分段介绍

1.1 代码准备

这一部分主要是代码的头文件命名空间与我们自行撰写的自定义函数get_need_file()的声明;具体代码如下所示。

#include <iostream>
#include <vector>
#include <io.h>
#include "gdal_priv.h"

using namespace std;

void get_need_file(string path, vector<string>& file, string ext);

  其中,由于我们在接下来的代码中需要用到容器vector这一数据类型,因此首先需要添加#include <vector>;同时,我们在接下来的代码中需要用到头文件io.h中的部分函数(主要都是一些与计算机系统、文件管理相关的函数),因此需要添加#include <io.h>;此外,我们是基于GDAL库来实现栅格数据读取的,因此需要添加#include "gdal_priv.h"

  接下来,这里声明了一个自定义函数get_need_file(),具体我们在本文1.2部分介绍。

1.2 栅格文件筛选

 由于我这里几乎将全部的代码都放在了主函数中,因此这一部分就先介绍代码main()函数的第一部分,亦即栅格文件的遴选部分;具体代码如下所示。

int main() {
	string file_path = R"(E:\02_Project\02_ChlorophyllProduce\01_Data\00_Test)";
	vector<string> my_file;
	string need_extension = ".bmp";
	get_need_file(file_path, my_file, need_extension);
	int file_size = my_file.size();
	if (file_size == 0)
	{
		cout << "No file can be found!" << endl;
	}
	else
	{
		cout << "Find " << file_size << " file(s).\n" << endl;
	}

 这一部分主要就是做好调用自定义函数get_need_file()的变量准备,并调用get_need_file()函数,得到指定文件夹下的栅格文件;随后,将栅格文件的筛选结果进行输出。这一部分的具体代码介绍,大家查看文章C++遴选出特定类型的文件或文件名符合要求的文件即可,这里就不再赘述。

1.3 栅格文件读取

 这一部分主要是基于GDAL库,循环读取前述文件夹中的每一个栅格遥感影像文件。

	int nXSize, nYSize;
	float** pafScanline = new float* [file_size];
	int pic_index = 1;
	for (auto x : my_file)
	{
		GDALDataset* poDataset;
		GDALAllRegister();
		CPLSetConfigOption("GDAL_FILENAME_IS_UTF8", "NO");
		poDataset = (GDALDataset*)GDALOpen(x.c_str(), GA_ReadOnly);
		if (poDataset == NULL)
		{
			cout << "Open File " << x << " Error!" << endl;
		}
		else
		{
			cout << "Open File " << x << " Success!" << endl;
		}

		GDALRasterBand* poBand;
		poBand = poDataset->GetRasterBand(1);
		nXSize = poBand->GetXSize();
		nYSize = poBand->GetYSize();
		cout << nXSize << "," << nYSize << "\n" << endl;
		pafScanline[pic_index - 1] = new float[nXSize * nYSize];
		poBand->RasterIO(GF_Read, 0, 0, nXSize, nYSize, pafScanline[pic_index - 1], nXSize, nYSize, GDT_Float32, 0, 0);

		pic_index ++;
	}

 其中,nXSizenYSize分别表示栅格遥感影像的列数与行数,pafScanline是我们读取栅格遥感影像文件所需的变量,之后读取好的遥感影像数据就会存放在这里;由于我们有多个栅格文件需要读取,因此通过for循环来实现批量读取的操作,并通过pic_index这个变量作为每一次读取文件的计数。

  在这里,float** pafScanline = new float* [file_size];这句代码表示我们将pafScanline作为一个指向指针的指针的数组;在后期读取遥感影像数据后,pafScanline[0]pafScanline[1]一直到pafScanline[5],这6个数值同样分别是指针,分别指向存储6景遥感影像数据的地址。这里我们通过new实现对pafScanline内存的动态分配,因为我们在获取栅格遥感影像的景数(也就是文件夹中栅格遥感影像文件的个数)之前,也不知道具体需要给pafScanline这一变量分配多少的内存。此外,在for循环中,我们还对pafScanline[0]pafScanline[1]一直到pafScanline[5]同样进行了动态内存分配,因为我们在获取每一景栅格遥感影像的行数与列数之前,同样是不知道需要给pafScanline[x]6个数组变量分配多少内存的。

  随后,for循环中的其他部分,就是GDAL库读取遥感影像的基本代码。读取第一景遥感影像数据后,我们将数据保存至pafScanline[0],并随后进行第二次循环,读取第二景遥感影像数据,并将其数据保存至pafScanline[1]中,随后再次循环;以此类推,直至读取6景遥感影像完毕。

  如果大家只是需要实现C++批量读取栅格遥感影像数据,那么以上操作就已经实现了大家的需求。其中,显然pafScanline[0]就是第一景遥感影像数据,pafScanline[1]就是第二景遥感影像数据,pafScanline[2]就是第三景遥感影像数据,以此类推。

1.4 像元时间序列数组生成

这一部分则是基于以上获取的各景遥感影像数据读取结果,进行每一个像元数值的时间序列数组生成。

	float** pixel_paf = new float* [nXSize * nYSize];
	for (int pixel_num = 0; pixel_num < nXSize * nYSize; pixel_num++)
	{
		pixel_paf[pixel_num] = new float[file_size];
		for (int time_num = 0; time_num < file_size; time_num++)
		{
			pixel_paf[pixel_num][time_num] = pafScanline[time_num][pixel_num];
		}
	}

  这一部分的代码思路其实也非常简单,就是通过两个for循环,将原本一共6的、每一个表示每一景遥感影像中全部数据的数组,转变为一共X的(X表示每一景遥感影像的像元总个数)、每一个表示每一个位置的像元在6景遥感影像中的各自数值的数组。

  在这里,由于同样的原因,我们对pixel_paf亦进行了内存的动态分配。

1.5 输出测试与代码收尾

 这一部分主要是输出一个我们刚刚配置好的像元数值时间序列数组,从而检查代码运行结果是否符合我们的要求;此外,由于前面我们对很多变量进行了动态内存分配,因此需要将其delete掉;同时,这里还可以对前面我们定义的指向指针的指针赋值为NULL,这样子其就不能再指向任何地址了,即彻底将其废除。

	for (int i = 0; i < file_size; i++)
	{
		cout << pixel_paf[0][i] << "," << endl;
	}

	delete[] pafScanline;
	delete[] pixel_paf;
	pafScanline = NULL;
	pixel_paf = NULL;

	return 0;
}

至此,代码的主函数部分结束。

1.6 自定义函数

这一部分是我们的自定义函数get_need_file()

void get_need_file(string path, vector<string>& file, string ext)
{
	intptr_t file_handle = 0;
	struct _finddata_t file_info;
	string temp;
	if ((file_handle = _findfirst(temp.assign(path).append("/*" + ext).c_str(), &file_info)) != -1)
	{
		do
		{
			file.push_back(temp.assign(path).append("/").append(file_info.name));
		} while (_findnext(file_handle, &file_info) == 0);
		_findclose(file_handle);
	}
}

如前所述,这一部分的具体代码介绍,大家查看文章C++遴选出特定类型的文件或文件名符合要求的文件即可,这里就不再赘述。

2 完整代码

本文所需用到的完整代码如下所示。

#include <iostream>
#include <vector>
#include <io.h>
#include "gdal_priv.h"

using namespace std;

void get_need_file(string path, vector<string>& file, string ext);

int main() {
	string file_path = R"(E:\02_Project\02_ChlorophyllProduce\01_Data\00_Test)";
	vector<string> my_file;
	string need_extension = ".bmp";
	get_need_file(file_path, my_file, need_extension);
	int file_size = my_file.size();
	if (file_size == 0)
	{
		cout << "No file can be found!" << endl;
	}
	else
	{
		cout << "Find " << file_size << " file(s).\n" << endl;
	}

	int nXSize, nYSize;
	float** pafScanline = new float* [file_size];
	int pic_index = 1;
	for (auto x : my_file)
	{
		GDALDataset* poDataset;
		GDALAllRegister();
		CPLSetConfigOption("GDAL_FILENAME_IS_UTF8", "NO");
		poDataset = (GDALDataset*)GDALOpen(x.c_str(), GA_ReadOnly);
		if (poDataset == NULL)
		{
			cout << "Open File " << x << " Error!" << endl;
		}
		else
		{
			cout << "Open File " << x << " Success!" << endl;
		}

		GDALRasterBand* poBand;
		poBand = poDataset->GetRasterBand(1);
		nXSize = poBand->GetXSize();
		nYSize = poBand->GetYSize();
		cout << nXSize << "," << nYSize << "\n" << endl;
		pafScanline[pic_index - 1] = new float[nXSize * nYSize];
		poBand->RasterIO(GF_Read, 0, 0, nXSize, nYSize, pafScanline[pic_index - 1], nXSize, nYSize, GDT_Float32, 0, 0);

		pic_index ++;
	}

	float** pixel_paf = new float* [nXSize * nYSize];
	for (int pixel_num = 0; pixel_num < nXSize * nYSize; pixel_num++)
	{
		pixel_paf[pixel_num] = new float[file_size];
		for (int time_num = 0; time_num < file_size; time_num++)
		{
			pixel_paf[pixel_num][time_num] = pafScanline[time_num][pixel_num];
		}
	}

	for (int i = 0; i < file_size; i++)
	{
		cout << pixel_paf[0][i] << "," << endl;
	}

	delete[] pafScanline;
	delete[] pixel_paf;
	pafScanline = NULL;
	pixel_paf = NULL;

	return 0;
}

void get_need_file(string path, vector<string>& file, string ext)
{
	intptr_t file_handle = 0;
	struct _finddata_t file_info;
	string temp;
	if ((file_handle = _findfirst(temp.assign(path).append("/*" + ext).c_str(), &file_info)) != -1)
	{
		do
		{
			file.push_back(temp.assign(path).append("/").append(file_info.name));
		} while (_findnext(file_handle, &file_info) == 0);
		_findclose(file_handle);
	}
}

当我们运行上述代码后,将会出现如下所示的界面。

  其中,会显示栅格遥感影像文件的筛选情况、具体文件名称及其各自的行号与列号;同时,最后一部分则是本文1.5部分提及的测试输出结果,其表示本文所用的6景遥感影像各自(0,0)位置处的像元数值。

  至此,大功告成。

参考链接: https://www.cnblogs.com/fkxxgis/p/18004549

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1582631.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

机器学习-08-关联规则和协同过滤

总结 本系列是机器学习课程的系列课程&#xff0c;主要介绍机器学习中关联规则和协同过滤。 参考 机器学习&#xff08;三&#xff09;&#xff1a;Apriori算法&#xff08;算法精讲&#xff09; Apriori 算法 理论 重点 MovieLens:一个常用的电影推荐系统领域的数据集 2…

2024阿里云2核4G服务器优惠价格表_2核4G性能测评

阿里云2核4G服务器多少钱一年&#xff1f;2核4G服务器1个月费用多少&#xff1f;2核4G服务器30元3个月、85元一年&#xff0c;轻量应用服务器2核4G4M带宽165元一年&#xff0c;企业用户2核4G5M带宽199元一年。本文阿里云服务器网整理的2核4G参加活动的主机是ECS经济型e实例和u1…

6种xinput1_3.dll丢失的解决办法,并探讨xinput1_3.dll丢失的原因及其属性。

xinput1_3.dll扮演着Visual C运行时库中不可或缺的角色&#xff0c;众多电脑软件都需依赖它以确保正常运行。 当您启动软件时&#xff0c;若遇到xinput1_3.dll无法执行代码的提示&#xff0c;可能会导致软件无法如常启动或运行。本文将向您介绍6种解决方案&#xff0c;并探讨xi…

潍微科技-水务信息管理平台 ChangePwd SQL注入漏洞复现

0x01 产品简介 水务信息管理平台主要帮助水务企业实现水质状态监测、管网运行监控、水厂安全保障、用水实时监控以及排放有效监管,确保居民安全稳定用水、环境有效保护,全面提升水务管理效率。由山东潍微科技股份有限公司研发,近年来,公司全力拓展提升水务、水利信息化业务…

二叉数应用——最优二叉树(Huffman树)、贪心算法—— Huffman编码

1、外部带权外部路径长度、Huffman树 从图中可以看出&#xff0c;深度越浅的叶子结点权重越大&#xff0c;深度越深的叶子结点权重越小的话&#xff0c;得出的带权外部路径长度越小。 Huffman树就是使得外部带权路径最小的二叉树 2、如何构造Huffman树 &#xff08;1&#xf…

Prime (2021): 2

前言 这个靶机有亿点难,收获很多。打靶的时候&#xff0c;前面很顺&#xff0c;到创建ssh公钥之后就一点不会了。 1 01 arp扫描&#xff0c;发现有一个130&#xff0c;再查看端口 有22&#xff0c;80&#xff0c;129&#xff0c;445&#xff0c;10123 dirb扫描目录 这…

【机器学习】决策树(Decision Tree,DT)算法介绍:原理与案例实现

前言 决策树算法是机器学习领域中的一种重要分类方法&#xff0c;它通过树状结构来进行决策分析。决策树凭借其直观易懂、易于解释的特点&#xff0c;在分类问题中得到了广泛的应用。本文将介绍决策树的基本原理&#xff0c;包括熵和信息熵的相关概念&#xff0c;以及几种经典的…

国内电缆附件市场规模保持增长态势 高压电缆附件占据较多市场份额

国内电缆附件市场规模保持增长态势 高压电缆附件占据较多市场份额 电缆附件是连接电缆与输配电线路及相关配电装置的产品&#xff0c;主要用于保护电缆、连接电缆或改变电缆方向&#xff0c;是电缆系统的重要组成部分。电缆附件种类多样&#xff0c;根据材料及制作工艺不同可分…

遥感影像为什么需要分块处理

原理 遥感影像通常具有极高的分辨率和大量的数据量&#xff0c;这就使得全景处理遥感影像成为一项极具挑战的任务。首要的问题是&#xff0c;大规模的遥感影像可能会超过硬件设备&#xff0c;特别是GPU的内存容量。其次&#xff0c;处理大规模遥感影像的计算复杂度非常高&…

linux常见使用命令

查看CPU内存 cat /proc/cpuinfo 动态查看 top 部分版本中没有&#xff0c;需要自行安装的命令 dstat 查看内核版本号 uname -r 系统版本的全部信息 uname -a 查看所有关于网络的相关信息 netstat -anp 查看8080端口是否被占用 netstat -anp | grep 8080 指定进程名字都有那些连…

【Linux-运维】查看操作系统的指定端口占用情况确定端口是哪个服务占用

不同的查看端口占用的方法&#xff0c;应用场景有所不同 一、查询某个端口是否被占用&#xff1f;lsof -i:端口号lsof -i:协议 查看某个协议的占用情况netstat -tlnp|grep 端口号ss -tlnp|grep 端口号fuser 端口号/协议ls -l /proc/$(lsof -t -i:端口号)|grep exe 二、确认指定…

【RAG实践】Rerank,让大模型 RAG 更近一步

RAGRerank原理 上一篇【RAG实践】基于LlamaIndex和Qwen1.5搭建基于本地知识库的问答机器人 我们介绍了什么是RAG&#xff0c;以及如何基于LLaMaIndex和Qwen1.5搭建基于本地知识库的问答机器人&#xff0c;原理图和步骤如下&#xff1a; 这里面主要包括包括三个基本步骤&#…

【Spring进阶系列丨第八篇】Spring整合junit 面向切面编程(AOP)详解

文章目录 一、Spring整合junit1.1、导入spring整合junit的jar1.2、在测试类上添加注解1.3、说明 二、面向切面编程(AOP)2.1、问题引出2.2、AOP2.2.1、概念2.2.2、作用2.2.3、优势2.2.4、实现方式2.2.5、专业术语2.2.5.1、连接点2.2.5.2、切入点2.2.5.3、通知/增强2.2.5.4、织入…

归并排序核心代码

核心&#xff1a; void merge(int a[],int l,int r){ if(l>r) return; int mid lr>>1; merge(a,l,mid);//先递归再归并 merge(a,mid1,r); int t0; //左右半段的起点 int il,jmid1; while(i < mid && j < r){ …

(源码)基于Spring Boot和Vue植物养殖技巧学习系统的设计与实现

前言 &#x1f497;博主介绍&#xff1a;✌专注于Java、小程序技术领域和毕业项目实战✌&#x1f497; &#x1f447;&#x1f3fb; 精彩专栏 推荐订阅&#x1f447;&#x1f3fb; 2024年Java精品实战案例《100套》 &#x1f345;文末获取源码联系&#x1f345; &#x1f31f…

动态规划9,最长定差子序列,最长斐波那契子序列长度,最长等差数列

如果还没有做过前面的题&#xff0c;建议先去尝试动态规划8 1218. 最长定差子序列 如果对之前的题比较熟悉的话&#xff0c;比较容易直接这样写&#xff0c;但是这样会超出时间限制&#xff1a; 所以我们要变成一次遍历&#xff0c;就得倒着推&#xff0c;就像这样&#xff1a…

windows server 2019 -DNS服务器搭建

前面是有关DNS的相关理论知识&#xff0c;懂了的可以直接跳到第五点。 说明一下&#xff1a;作为服务器ip最好固定下来&#xff0c;以DNS服务器为例子&#xff0c;如果客户机的填写DNS信息的之后&#xff0c;服务器的ip如果变动了的话&#xff0c;客户机都得跟着改&#xff0c…

HJ53 杨辉三角的变形(基础数学,生成数组不行,会越界,使用规律)

第一种方法&#xff1a; 生成杨辉三角的方法不行&#xff0c;会出现越界&#xff0c; 数组从[0][0]开始&#xff0c;i行j列 只看列 每一行的最右侧坐标为2*i,下坐标为 0&#xff0c; 0&#xff0c;1&#xff0c;2 0&#xff0c;1&#xff0c;2&#xff0c;3&#xff0c;4 … …

学习:面向云备份提供商的 Solidigm 固态硬盘

SSD与HDD的区别 SSD和HDD之间的主要区别在于它们如何存储和传输数据。HDD有一个旋转盘片或磁盘&#xff0c;用于读取和写入数据。HDD的每GB初始价格通常低于SSD&#xff0c;这使其成为大型机构&#xff08;如金融机构、政府数据存储设施、高性能计算中心&#xff08;HPC&#…

OJ 栓奶牛【C】【Python】【二分算法】

题目 算法思路 要求的距离在最近木桩与最远木桩相隔距离到零之间&#xff0c;所以是二分法 先取一个中间值&#xff0c;看按照这个中间值可以栓多少奶牛&#xff0c;再与输入奶牛数比较&#xff0c;如果大于等于&#xff0c;则增大距离&#xff0c;注意这里等于也是增大距离…