抓住风口,快速上手RAG应用开发!

news2025/1/6 18:15:17

免责声明~

任何文章不要过度深思!

万事万物都经不起审视,因为世上没有同样的成长环境,也没有同样的认知水平,更「没有适用于所有人的解决方案」

不要急着评判文章列出的观点,只需代入其中,适度审视一番自己即可,能「跳脱出来从外人的角度看看现在的自己处在什么样的阶段」才不为俗人

怎么想、怎么做,全在乎自己「不断实践中寻找适合自己的大道」

2024年,大模型发展的脚步持续加快,你一定对 RAG(检索增强生成)有所耳闻,随大模型快速发展,RAG 作为一种新兴开发范式,能有效解决大模型的幻觉和知识停滞的问题,并已成为企业构建智能问答应用的最佳实践。

1 什么是RAG?

对大型语言模型输出进行优化,使其能够在生成响应之前引用训练数据来源之外的权威知识库。大型语言模型(LLM,Large Language Model)用海量数据进行训练,使用数十亿个参数为回答问题、翻译语言和完成句子等任务生成原始输出。

在 LLM 本就强大的功能基础上,RAG 将其扩展为能访问特定领域或组织的内部知识库,所有这些都无需重新训练模型。这是一种经济高效地改进 LLM 输出的方法,让它在各种情境下都能保持相关性、准确性和实用性。

2 为啥RAG很重要?

LLM 是一项关键的AI技术,为智能聊天机器人和其他自然语言处理(NLP)应用程序提供支持。目标是通过交叉引用权威知识来源,创建能够在各种环境中回答用户问题的机器人。但 LLM 技术本质在 LLM 响应中引入不可预测性。此外,LLM 训练数据是静态的,并引入其所掌握知识的截止日期。

LLM 面临已知挑战:

  • 在没有答案的情况下提供虚假信息

  • 当用户需要特定的当前响应时,提供过时或通用的信息

  • 从非权威来源创建响应

  • 由于术语混淆,不同的培训来源使用相同的术语来谈论不同的事情,因此会产生不准确的响应

可将LLM看作一个过于热情的新员工,他拒绝随时了解时事,但总是会绝对自信地回答每一个问题。不幸的是,这种态度会对用户的信任产生负面影响,这是您不希望聊天机器人效仿的!

RAG 是解决其中一些挑战的一种方法。它会重定向 LLM,从权威的、预先确定的知识来源中检索相关信息。组织可以更好地控制生成的文本输出,并且用户可以深入了解 LLM 如何生成响应。

3 RAG的好处

RAG 技术为组织的AIGC工作带来多项好处。

3.1 经济高效的实施

聊天机器人开发通常从[基础模型]开始。基础模型(FM)是在广泛的广义和未标记数据上训练的 API 可访问 LLM。针对组织或领域特定信息重新训练 FM 的计算和财务成本很高。RAG 是一种将新数据引入 LLM 的更加经济高效的方法。它使AIGC技术更广泛地获得和使用。

3.2 当前信息

即使 LLM 的原始训练数据来源适合您的需求,但保持相关性也具有挑战性。RAG 允许开发人员为生成模型提供最新的研究、统计数据或新闻。他们可以使用 RAG 将 LLM 直接连接到实时社交媒体提要、新闻网站或其他经常更新的信息来源。然后,LLM 可以向用户提供最新信息。

3.3 增强用户信任度

RAG 允许 LLM 通过来源归属来呈现准确的信息。输出可以包括对来源的引文或引用。如果需要进一步说明或更详细的信息,用户也可以自己查找源文档。这可以增加对您的生成式人工智能解决方案的信任和信心。

3.4 更多开发人员控制权

借助 RAG,开发人员可以更高效地测试和改进他们的聊天应用程序。他们可以控制和更改 LLM 的信息来源,以适应不断变化的需求或跨职能使用。开发人员还可以将敏感信息的检索限制在不同的授权级别内,并确保 LLM 生成适当的响应。此外,如果 LLM 针对特定问题引用了错误的信息来源,他们还可以进行故障排除并进行修复。组织可以更自信地为更广泛的应用程序实施生成式人工智能技术。

4 RAG的工作原理

如果没有 RAG,LLM 会接受用户输入,并根据它所接受训练的信息或它已经知道的信息创建响应。RAG 引入了一个信息检索组件,该组件利用用户输入首先从新数据源提取信息。用户查询和相关信息都提供给 LLM。LLM 使用新知识及其训练数据来创建更好的响应。

4.1 创建外部数据

LLM 原始训练数据集之外的新数据称为外部数据,可来自多个数据源如 API、数据库或文档存储库。数据可能以各种格式存在如文件、数据库记录或长篇文本。

另一种称为嵌入语言模型的 AI 技术将数据转换为数字表示形式并将其存储在向量数据库。这个过程会创建一个AIGC模型可以理解的知识库。

4.2 检索相关信息

下一步是执行相关性搜索。用户查询将转换为向量表示形式,并与向量数据库匹配。如考虑一个可回答组织的人力资源问题的智能聊天机器人。如员工搜索*:“我有多少年假?”*,系统将检索年假政策文件及员工个人过去的休假记录。这些特定文件将被退回,因为它们与员工输入的内容高度相关。相关性是使用数学向量计算和表示法计算和建立的。

4.3 增强 LLM 提示

接下来,RAG 模型通过在上下文中添加检索到的相关数据来增强用户输入(或提示)。此步骤使用提示工程技术与 LLM 进行有效沟通。增强提示允许大型语言模型为用户查询生成准确的答案。

4.4 更新外部数据

外部数据过时咋办?要维护当前信息以供检索,请异步更新文档并更新文档的嵌入表示形式。您可以通过自动化实时流程或定期批处理来执行此操作。这是数据分析中常见的挑战——可以使用不同的数据科学方法进行变更管理。

4.5 将 RAG 与 LLM 配合使用的概念流程

5 大厂的 RAG 系统学习教程

RAG 技术易于入门,但效果难提升:

  • 如何借助 RAG,最大限度发挥大模型的潜力?

  • 怎样轻松搭建你的专属 RAG 知识库与智能问答机器人?

  • RAG 又如何能够在企业级场景中高质量落地?

腾讯云开发者社区携手腾讯云向量数据库团队与腾讯云安灯团队,联合推出**《RAG 七天入门训练营》,将从基础理论到实际应用**,由鹅厂大牛带你快速学习 RAG,助你轻松上手AI Plus,玩转高质量 RAG 应用!

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1580651.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

OpenHarmony开发-连接开发板调试应用

在 OpenHarmony 开发过程中,连接开发板进行应用调试是一个关键步骤,只有在真实的硬件环境下,我们才能测试出应用更多的潜在问题,以便后续我们进行优化。本文详细介绍了连接开发板调试 OpenHarmony 应用的操作步骤。 首先&#xf…

RK3568---4G模块驱动实验

作者简介: 一个平凡而乐于分享的小比特,中南民族大学通信工程专业研究生在读,研究方向无线联邦学习 擅长领域:驱动开发,嵌入式软件开发,BSP开发 作者主页:一个平凡而乐于分享的小比特的个人主页…

【攻防世界】wife_wife

原型链污染 源码 app.post(/register, (req, res) > {let user JSON.parse(req.body)if (!user.username || !user.password) {return res.json({ msg: empty username or password, err: true })}if (users.filter(u > u.username user.username).length) {return …

iOS App Store审核要求与Flutter应用的兼容性分析

本文探讨了使用Flutter开发的iOS应用能否上架,以及上架的具体流程。苹果提供了App Store作为正式上架渠道,同时也有TestFlight供开发者进行内测。合规并通过审核后,Flutter应用可以顺利上架。但上架过程可能存在一些挑战,因此可能…

网格矢量如何计算莫兰指数

网格矢量如何计算莫兰指数 引言 遇到一个问题,计算矢量网格的莫兰指数。 概念解释 莫兰指数 莫兰指数(Moran’s Index)是一种空间自相关指标,用于衡量空间数据的相似性和聚集程度。它可以用来描述一个区域与其邻近区域之间的属…

web攻防——js

1.php和js的区别 他只有这一行(所以它是解析形语言)而js写了什么,看源代码就显示什么 安装

性能分析-数据库与磁盘知识

数据库 数据库,其实是数据库管理系统dbms。 数据库管理系统, 常见: 关系型数据库: mysql、pg、 库的表,表与表之间有关联关系; 表二维表统一标准的SQL(不局限于CRUD)非关系型数据…

代码随想录day35 | 贪心算法P4 | ● 860 ● 406 ● 452

860.柠檬水找零 在柠檬水摊上,每一杯柠檬水的售价为 5 美元。顾客排队购买你的产品,(按账单 bills 支付的顺序)一次购买一杯。 每位顾客只买一杯柠檬水,然后向你付 5 美元、10 美元或 20 美元。你必须给每个顾客正确…

共享云桌面和虚拟云桌面优劣势对比分析

随着云计算技术的不断发展,共享云桌面和虚拟云桌面成为了企业信息化建设的热门选择。共享云桌面和虚拟云桌面这两种技术各有优劣势,下面我们将对它们进行对比分析。 首先,我们来了解一下共享云桌面的优势。共享云桌面是指多个用户通过云平台…

软件测试面试入职了,背完这写轻松上岸

全网首发-涵盖16个技术栈 第一部分,测试理论(测试基础需求分析测试模型测试计划测试策略测试案例等等) 第二部分,Linux( Linux基础Linux练习题) 第三部分,MySQL(基础知识查询练习…

Pots(DFS BFS)

//新生训练 #include <iostream> #include <algorithm> #include <cstring> #include <queue> using namespace std; typedef pair<int, int> PII; const int N 205; int n, m; int l; int A, B, C; int dis[N][N];struct node {int px, py, op…

美团一面:说说synchronized的实现原理?问麻了。。。。

引言 在现代软件开发领域&#xff0c;多线程并发编程已经成为提高系统性能、提升用户体验的重要手段。然而&#xff0c;多线程环境下的数据同步与资源共享问题也随之而来&#xff0c;处理不当可能导致数据不一致、死锁等各种并发问题。为此&#xff0c;Java语言提供了一种内置…

揭秘ChatGPT的数据集构建

从Open AI发表的论文《Training language models to follow instructions with human feedback》&#xff0c;我们可以知道ChatGPT/InstructGPT&#xff08;两者技术原理基本一致&#xff0c;下面不再做区分&#xff09;的训练过程分为以下3步&#xff1a; SFT&#xff1a;根据…

私域电商客户要挨一刀的“订单发货管理”,微信:必须强制接入

文丨微三云营销总监胡佳东&#xff0c;点击上方“关注”&#xff0c;为你分享市场商业模式电商干货。 - 引言&#xff1a;超90%的私域运营商家都见到了或者说遇到了这个问题&#xff0c;如果没有读懂这个微信的模型机制&#xff0c;一定会懵逼&#xff0c;微三云营销总监胡佳…

C++11:function包装器

包装器&#xff0c;体现了C11中的封装性&#xff0c;包装器可以应用于&#xff1a;函数指针&#xff0c;仿函数&#xff0c;lambda 而包装器function的出现刚好也弥补了上述三种语法的不足之处 函数指针写起来较为复杂&#xff0c;而仿函数之间类型不同&#xff0c;lambda则在…

【Week Y5】yolo.py文件解读,插入C2模块到指定位置

插入C2模块到指定位置 一、common.py文件修改二、yolo.py文件修改三、yolov5s.yaml修改四、训练 &#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 | 接辅导、项目定制 模块结构如下&#xff1a;【同Y4】 【Y4…

Jackson 2.x 系列【15】序列化器 JsonSerializer

有道无术&#xff0c;术尚可求&#xff0c;有术无道&#xff0c;止于术。 本系列Jackson 版本 2.17.0 源码地址&#xff1a;https://gitee.com/pearl-organization/study-jaskson-demo 文章目录 1. 概述2. 方法2.1 构造2.2 序列化2.3 其他 3. 实现类3.1 StdSerializer3.1.1 源…

CSDN 广告太多,停更通知,转移到博客园

文章目录 前言新博客地址 前言 CSDN的广告实在是太多了&#xff0c;我是真的有点忍不了。直接把广告插在我的文章中间。而且我已经懒得找工作了&#xff0c;我当初写CSDN的目的就是为了找工作&#xff0c;有个博客排名。当时经济环境实在是太差了。我也没必要纠结这个2000粉丝…

Vue通过自定义指令实现元素平滑上升的动画效果。没一句废话

1、演示 2、介绍 这个指令不是原生自带的&#xff0c;需要手动去书写&#xff0c;但是这辈子只需要编写这一次就好了&#xff0c;后边可以反复利用。 用到的API&#xff1a;IntersectionObserver 这里有详细介绍 3、Vue文件代码 <template><div class"container&…

【计算机考研】408算法大题怎么练?

先说结论&#xff1a;基础阶段学好各个数据结构与&#xff0c;重点是数组、链表、树、图。然后强化阶段突破算法提 在基础阶段&#xff0c;并不需要过于专门地练习算法。相反&#xff0c;基础阶段的重点应该放在对各种数据结构原理的深入理解上。在我个人的经验中&#xff0c;…