网格矢量如何计算莫兰指数

news2024/11/25 0:40:45

网格矢量如何计算莫兰指数

引言

遇到一个问题,计算矢量网格的莫兰指数。

概念解释

莫兰指数

莫兰指数(Moran’s Index)是一种空间自相关指标,用于衡量空间数据的相似性和聚集程度。它可以用来描述一个区域与其邻近区域之间的属性值的相关性。莫兰指数的取值范围通常在-1到1之间。

  • 当莫兰指数接近1时,表示空间数据呈现出正相关,即相似的值倾向于聚集在一起。
  • 当莫兰指数接近-1时,表示空间数据呈现出负相关,即不同的值倾向于聚集在一起。
  • 当莫兰指数接近0时,表示空间数据呈现出随机分布,没有明显的空间自相关性。

knearst=4?

knearst=4矩阵是一种空间权重矩阵,用于定义空间数据中每个观测点的邻域。在这种矩阵中,每个观测点的邻域由其最近的4个点组成。

示意图,这个用距离小时

解决思路

计算矢量数据中每个要素(网格)的局部莫兰指数,并将计算结果添加到矢量数据的属性表中。我做了一个示意矢量,如图所示:

因为需要涉及到矢量数据的操作,这里我们使用gdal

还涉及到莫兰指数,我们使用pysal,这个包用于空间权重矩阵的构建、空间自相关指标的计算、空间回归模型的估计等。

初始化和读取矢量数据

import numpy as np
import pysal
from osgeo import ogr

driver = ogr.GetDriverByName('ESRI Shapefile')
SHP_PATH = r"矢量数据.shp"
dataset = driver.Open(SHP_PATH, 1) 
layer = dataset.GetLayer()
  1. 使用 ogr 库打开矢量数据文件(ESRI Shapefile),以读写模式打开。
  2. 获取矢量数据的图层。

提取属性值和坐标

values = []
coords = []
for feature in layer:
    geom = feature.GetGeometryRef()
    centroid = geom.Centroid()
    coords.append([centroid.GetX(), centroid.GetY()])
    values.append(feature.GetField('singlearea'))

values = np.array(values)
coords = np.array(coords)
  1. 遍历图层中的每个要素(feature)。
  2. 获取要素的几何体(geometry),并计算其质心坐标。
  3. 将质心坐标添加到 coords 列表中。
  4. 将指定字段(‘singlearea’)的属性值添加到 values 列表中。
  5. 将属性值和坐标转换为 NumPy 数组。

创建权重矩阵

knn = pysal.lib.weights.KNN(coords, k=4)
knn.transform = 'r'
  1. 使用 pysal 库的 KNN 函数创建 k 最近邻权重矩阵,设置 k=4
  2. 对权重矩阵进行行标准化。

计算局部莫兰指数

local_moran = pysal.explore.esda.Moran_Local(values, knn)
print("局部莫兰指数:", local_moran.Is)

# 标准化局部莫兰指数
min_value = np.min(local_moran.Is)
max_value = np.max(local_moran.Is)
normalized_local_moran = (local_moran.Is - min_value) / (max_value - min_value) * 2 - 1
print("标准化后的局部莫兰指数:", normalized_local_moran)
  1. 使用 pysal 库的 Moran_Local 函数计算每个网格的局部莫兰指数。
  2. 打印计算得到的局部莫兰指数。

将局部莫兰指数添加到矢量数据属性表

lisa_field = ogr.FieldDefn('LISA_I', ogr.OFTReal)
layer.CreateField(lisa_field)

dataset = None
dataset = driver.Open(SHP_PATH, 1)
layer = dataset.GetLayer()

for i in range(layer.GetFeatureCount()):
    feature = layer.GetFeature(i)
    feature.SetField('LISA_I', float(local_moran.Is[i]))
    layer.SetFeature(feature)
  1. 创建一个新的字段(‘LISA_I’)来存储局部莫兰指数。
  2. 重新打开矢量数据集并获取图层。
  3. 遍历图层中的每个要素。
  4. 使用 layer.GetFeature(i) 获取要素,并将对应的局部莫兰指数赋值给新字段。
  5. 更新要素的属性表。

关闭数据集并销毁数据源

dataset.Destroy()
dataset = None
print("局部莫兰指数已成功添加到矢量数据属性表中。")
  1. 关闭矢量数据集。
  2. 销毁数据源以释放资源。
  3. 打印提示信息,表示局部莫兰指数已成功添加到矢量数据的属性表中。

完整代码

import numpy as np
import pysal
from osgeo import ogr

# 打开矢量数据文件(以读写模式打开)
driver = ogr.GetDriverByName('ESRI Shapefile')
SHP_PATH = r"矢量数据 - 副本.shp"
dataset = driver.Open(SHP_PATH, 1)  
layer = dataset.GetLayer()

# 提取属性值和坐标
values = []
coords = []
for feature in layer:
    geom = feature.GetGeometryRef()
    centroid = geom.Centroid()
    coords.append([centroid.GetX(), centroid.GetY()])
    values.append(feature.GetField('cenlan'))

# 将属性值和坐标转换为NumPy数组
values = np.array(values)
coords = np.array(coords)

# 创建k最近邻权重矩阵(knearst=4)
knn = pysal.lib.weights.KNN(coords, k=4)

# 行标准化权重矩阵
knn.transform = 'r'

# 计算每个网格的局部莫兰指数
local_moran = pysal.explore.esda.Moran_Local(values, knn)
print("局部莫兰指数:", local_moran.Is)

# 标准化局部莫兰指数
min_value = np.min(local_moran.Is)
max_value = np.max(local_moran.Is)
normalized_local_moran = (local_moran.Is - min_value) / (max_value - min_value) * 2 - 1
print("标准化后的局部莫兰指数:", normalized_local_moran)

# 将标准化后的局部莫兰指数添加到矢量数据属性表,使用有效的字段名称
lisa_field = ogr.FieldDefn('LISA_I', ogr.OFTReal)
layer.CreateField(lisa_field)

# 重新打开数据集并获取图层
dataset = None
dataset = driver.Open(SHP_PATH, 1)
layer = dataset.GetLayer()

# 使用 layer.GetFeature(i) 获取要素并更新,使用更新后的字段名称
for i in range(layer.GetFeatureCount()):
    feature = layer.GetFeature(i)
    feature.SetField('LISA_I', float(normalized_local_moran[i]))
    layer.SetFeature(feature)

# 关闭数据集并销毁数据源
dataset.Destroy()
dataset = None

print("标准化后的局部莫兰指数已成功添加到矢量数据属性表中。")

效果展示

运行完代码,效果为:

总结

使用gdal负责空间数据处理,使用pysal完成莫兰指数的计算,然后把计算结果写入到属性表里,

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1580644.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

web攻防——js

1.php和js的区别 他只有这一行(所以它是解析形语言)而js写了什么,看源代码就显示什么 安装

性能分析-数据库与磁盘知识

数据库 数据库,其实是数据库管理系统dbms。 数据库管理系统, 常见: 关系型数据库: mysql、pg、 库的表,表与表之间有关联关系; 表二维表统一标准的SQL(不局限于CRUD)非关系型数据…

代码随想录day35 | 贪心算法P4 | ● 860 ● 406 ● 452

860.柠檬水找零 在柠檬水摊上,每一杯柠檬水的售价为 5 美元。顾客排队购买你的产品,(按账单 bills 支付的顺序)一次购买一杯。 每位顾客只买一杯柠檬水,然后向你付 5 美元、10 美元或 20 美元。你必须给每个顾客正确…

共享云桌面和虚拟云桌面优劣势对比分析

随着云计算技术的不断发展,共享云桌面和虚拟云桌面成为了企业信息化建设的热门选择。共享云桌面和虚拟云桌面这两种技术各有优劣势,下面我们将对它们进行对比分析。 首先,我们来了解一下共享云桌面的优势。共享云桌面是指多个用户通过云平台…

软件测试面试入职了,背完这写轻松上岸

全网首发-涵盖16个技术栈 第一部分,测试理论(测试基础需求分析测试模型测试计划测试策略测试案例等等) 第二部分,Linux( Linux基础Linux练习题) 第三部分,MySQL(基础知识查询练习…

Pots(DFS BFS)

//新生训练 #include <iostream> #include <algorithm> #include <cstring> #include <queue> using namespace std; typedef pair<int, int> PII; const int N 205; int n, m; int l; int A, B, C; int dis[N][N];struct node {int px, py, op…

美团一面:说说synchronized的实现原理?问麻了。。。。

引言 在现代软件开发领域&#xff0c;多线程并发编程已经成为提高系统性能、提升用户体验的重要手段。然而&#xff0c;多线程环境下的数据同步与资源共享问题也随之而来&#xff0c;处理不当可能导致数据不一致、死锁等各种并发问题。为此&#xff0c;Java语言提供了一种内置…

揭秘ChatGPT的数据集构建

从Open AI发表的论文《Training language models to follow instructions with human feedback》&#xff0c;我们可以知道ChatGPT/InstructGPT&#xff08;两者技术原理基本一致&#xff0c;下面不再做区分&#xff09;的训练过程分为以下3步&#xff1a; SFT&#xff1a;根据…

私域电商客户要挨一刀的“订单发货管理”,微信:必须强制接入

文丨微三云营销总监胡佳东&#xff0c;点击上方“关注”&#xff0c;为你分享市场商业模式电商干货。 - 引言&#xff1a;超90%的私域运营商家都见到了或者说遇到了这个问题&#xff0c;如果没有读懂这个微信的模型机制&#xff0c;一定会懵逼&#xff0c;微三云营销总监胡佳…

C++11:function包装器

包装器&#xff0c;体现了C11中的封装性&#xff0c;包装器可以应用于&#xff1a;函数指针&#xff0c;仿函数&#xff0c;lambda 而包装器function的出现刚好也弥补了上述三种语法的不足之处 函数指针写起来较为复杂&#xff0c;而仿函数之间类型不同&#xff0c;lambda则在…

【Week Y5】yolo.py文件解读,插入C2模块到指定位置

插入C2模块到指定位置 一、common.py文件修改二、yolo.py文件修改三、yolov5s.yaml修改四、训练 &#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 | 接辅导、项目定制 模块结构如下&#xff1a;【同Y4】 【Y4…

Jackson 2.x 系列【15】序列化器 JsonSerializer

有道无术&#xff0c;术尚可求&#xff0c;有术无道&#xff0c;止于术。 本系列Jackson 版本 2.17.0 源码地址&#xff1a;https://gitee.com/pearl-organization/study-jaskson-demo 文章目录 1. 概述2. 方法2.1 构造2.2 序列化2.3 其他 3. 实现类3.1 StdSerializer3.1.1 源…

CSDN 广告太多,停更通知,转移到博客园

文章目录 前言新博客地址 前言 CSDN的广告实在是太多了&#xff0c;我是真的有点忍不了。直接把广告插在我的文章中间。而且我已经懒得找工作了&#xff0c;我当初写CSDN的目的就是为了找工作&#xff0c;有个博客排名。当时经济环境实在是太差了。我也没必要纠结这个2000粉丝…

Vue通过自定义指令实现元素平滑上升的动画效果。没一句废话

1、演示 2、介绍 这个指令不是原生自带的&#xff0c;需要手动去书写&#xff0c;但是这辈子只需要编写这一次就好了&#xff0c;后边可以反复利用。 用到的API&#xff1a;IntersectionObserver 这里有详细介绍 3、Vue文件代码 <template><div class"container&…

【计算机考研】408算法大题怎么练?

先说结论&#xff1a;基础阶段学好各个数据结构与&#xff0c;重点是数组、链表、树、图。然后强化阶段突破算法提 在基础阶段&#xff0c;并不需要过于专门地练习算法。相反&#xff0c;基础阶段的重点应该放在对各种数据结构原理的深入理解上。在我个人的经验中&#xff0c;…

【AcWing】蓝桥杯集训每日一题Day17|单调队列|求直方图中最大矩形|单调栈|模型转化|1413.矩形牛棚(C++)

1413.矩形牛棚 1413. 矩形牛棚 - AcWing题库难度&#xff1a;中等时/空限制&#xff1a;1s / 256MB总通过数&#xff1a;1914总尝试数&#xff1a;3823来源&#xff1a;usaco training 6.1算法标签单调栈 题目内容 作为一个资本家&#xff0c;农夫约翰希望通过购买更多的奶牛…

【零基础学数据结构】链表

目录 1.链表的概念 ​编辑 2.链表的雏形 ​编辑 3.链表的组成 ​编辑 4.链表代码 4.1创建节点 4.2链表的打印 4.3链表的尾插 4.4链表的头插 4.5链表的尾删 4.6链表的头删 4.7链表的查找 4.8链表在指定位置之前插⼊数据 4.9链表在指定位置之后插⼊数据 4.9-1删除pos节点 4.9…

VBA技术资料MF140:在PowerPoint中移动幻灯片位置

我给VBA的定义&#xff1a;VBA是个人小型自动化处理的有效工具。利用好了&#xff0c;可以大大提高自己的工作效率&#xff0c;而且可以提高数据的准确度。“VBA语言専攻”提供的教程一共九套&#xff0c;分为初级、中级、高级三大部分&#xff0c;教程是对VBA的系统讲解&#…

Java基于微信小程序的校园外卖平台设计与实现,附源码

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…

openGauss学习笔记-255 openGauss性能调优-使用Plan Hint进行调优-Hint的错误、冲突及告警

文章目录 openGauss学习笔记-255 openGauss性能调优-使用Plan Hint进行调优-Hint的错误、冲突及告警 openGauss学习笔记-255 openGauss性能调优-使用Plan Hint进行调优-Hint的错误、冲突及告警 Plan Hint的结果会体现在计划的变化上&#xff0c;可以通过explain来查看变化。 …