项目目标:
1.图片人脸识别
2.视频人脸识别
3.ESP32Cam摄像头网页视频人脸识别
项目效果视频:
ESP32Cam摄像头人脸识别
OpenCV本地视频人脸识别
ESP32Cam摄像头人脸检测
项目基础代码内容:
一、读取图片
# 导入cv模块
import cv2 as cv
# 读取图片
img = cv.imread('face1.jpg')
# 显示图片
cv.imshow('read_img', img)
# 等待
cv.waitKey(0)
# 释放内存
cv.destroyAllWindows()
二、灰度转换
# 导入cv模块
import cv2 as cv
# 读取图片
img = cv.imread('face1.jpg')
# 灰度转换
gray_img = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
# 显示灰度图片
cv.imshow('gray', gray_img)
# 保存灰度图片
cv.imwrite('gray_face1.jpg', gray_img)
# 显示图片
cv.imshow('read_img', img)
# 等待
cv.waitKey(0)
# 释放内存
cv.destroyAllWindows()
三、修改显示窗口尺寸
# 导入cv模块
import cv2 as cv
# 读取图片
img = cv.imread('face1.jpg')
# 修改尺寸
resize_img = cv.resize(img, dsize=(200, 200))
# 显示原图
cv.imshow('img', img)
# 显示修改后的
cv.imshow('resize_img', resize_img)
# 打印原图尺寸大小
print('未修改:', img.shape)
# 打印修改后的大小
print('修改后:', resize_img.shape)
# 等待
while True:
if ord('q') == cv.waitKey(0):
break
# 释放内存
cv.destroyAllWindows()
四、绘制识别后框选的矩形和圆形
# 导入cv模块
import cv2 as cv
# 读取图片
img = cv.imread('face1.jpg')
# 坐标
x, y, w, h = 100, 100, 100, 100
# 绘制矩形
cv.rectangle(img, (x, y, x + w, y + h), color=(0, 0, 255), thickness=1)
# 绘制圆形
cv.circle(img, center=(x + w, y + h), radius=100, color=(255, 0, 0), thickness=5)
# 显示
cv.imshow('re_img', img)
while True:
if ord('q') == cv.waitKey(0):
break
# 释放内存
cv.destroyAllWindows()
五、本地图片人脸检测
# 导入cv模块
import cv2 as cv
# 检测函数
def face_detect_demo():
gary = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
face_detect = cv.CascadeClassifier('D:/opencv/opencv/sources/data/haarcascades/haarcascade_frontalface_alt2.xml')
face = face_detect.detectMultiScale(gary, 1.01, 5, 0, (100, 100), (300, 300))
for x, y, w, h in face:
cv.rectangle(img, (x, y), (x + w, y + h), color=(0, 0, 255), thickness=2)
cv.imshow('result', img)
# 读取图像
img = cv.imread('face1.jpg')
# 检测函数
face_detect_demo()
# 等待
while True:
if ord('q') == cv.waitKey(0):
break
# 释放内存
cv.destroyAllWindows()
六、本地图片中多个人脸检测
# 导入cv模块
import cv2 as cv
# 检测函数
def face_detect_demo():
gary = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
face_detect = cv.CascadeClassifier('D:/opencv/opencv/sources/data/haarcascades/haarcascade_frontalface_default.xml')
face = face_detect.detectMultiScale(gary)
for x, y, w, h in face:
cv.rectangle(img, (x, y), (x + w, y + h), color=(0, 0, 255), thickness=2)
cv.imshow('result', img)
# 读取图像
img = cv.imread('face2.jpg')
# 检测函数
face_detect_demo()
# 等待
while True:
if ord('q') == cv.waitKey(0):
break
# 释放内存
cv.destroyAllWindows()
七、本地视频人脸检测
def face_Video():
# 加载视频
cap = cv2.VideoCapture(r'./image/1.mp4')
# 创建一个级联分类器 加载一个.xml分类器文件 它既可以是Haar特征也可以是LBP特征的分类器
face_detect = cv2.CascadeClassifier(r'./face_detection/haarcascades/haarcascade_frontalface_default.xml')
while True:
# 读取视频片段
ret, frame = cap.read()
if not ret: # 读完视频后falg返回False
break
frame = cv2.resize(frame, None, fx=0.5, fy=0.5)
# 灰度处理
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 多个尺度空间进行人脸检测 返回检测到的人脸区域坐标信息
face_zone = face_detect.detectMultiScale(gray, scaleFactor=1.2, minNeighbors=8)
# 绘制矩形和圆形检测人脸
for x, y, w, h in face_zone:
cv2.rectangle(frame, pt1=(x, y), pt2=(x + w, y + h), color=[0, 0, 255], thickness=2)
cv2.circle(frame, center=(x + w // 2, y + h // 2), radius=w // 2, color=[0, 255, 0], thickness=2)
# 显示图片
cv2.imshow('video', frame)
# 设置退出键和展示频率
if ord('q') == cv2.waitKey(40):
break
# 释放资源
cv2.destroyAllWindows()
cap.release()
八、本地摄像头拍照保存照片到本地文件夹
# 导入模块
import cv2
# 摄像头
cap = cv2.VideoCapture(0)
falg = 1
num = 1
while cap.isOpened(): # 检测是否在开启状态
ret_flag, Vshow = cap.read() # 得到每帧图像
cv2.imshow("Capture_Test", Vshow) # 显示图像
k = cv2.waitKey(1) & 0xFF # 按键判断s
if k == ord('s'): # 保存
cv2.imwrite("F:/opencv/data/" + str(num) + ".123" + ".jpg", Vshow)
print("success to save" + str(num) + ".jpg")
print("-------------------")
num += 1
elif k == ord(' '): # 退出
break
# 释放摄像头
cap.release()
# 释放内存
cv2.destroyAllWindows()
九、训练人脸数据
import os
import cv2
import sys
from PIL import Image
import numpy as np
def getImageAndLabels(path):
facesSamples = []
ids = []
imagePaths = [os.path.join(path, f) for f in os.listdir(path)]
# 检测人脸
face_detector = cv2.CascadeClassifier('D:/opencv/opencv/sources/data/haarcascades/haarcascade_frontalface_alt2.xml')
# 打印数组imagePaths
print('数据排列:', imagePaths)
# 遍历列表中的图片
for imagePath in imagePaths:
# 打开图片,黑白化
PIL_img = Image.open(imagePath).convert('L')
# 将图像转换为数组,以黑白深浅
# PIL_img = cv2.resize(PIL_img, dsize=(400, 400))
img_numpy = np.array(PIL_img, 'uint8')
# 获取图片人脸特征
faces = face_detector.detectMultiScale(img_numpy)
# 获取每张图片的id和姓名
id = int(os.path.split(imagePath)[1].split('.')[0])
# 预防无面容照片
for x, y, w, h in faces:
ids.append(id)
facesSamples.append(img_numpy[y:y + h, x:x + w])
# 打印脸部特征和id
# print('fs:', facesSamples)
print('id:', id)
# print('fs:', facesSamples[id])
print('fs:', facesSamples)
# print('脸部例子:',facesSamples[0])
# print('身份信息:',ids[0])
return facesSamples, ids
if __name__ == '__main__':
# 图片路径
path = './data/jm/'
# 获取图像数组和id标签数组和姓名
faces, ids = getImageAndLabels(path)
# 获取训练对象
recognizer = cv2.face.LBPHFaceRecognizer_create()
# recognizer.train(faces,names)#np.array(ids)
recognizer.train(faces, np.array(ids))
# 保存文件
recognizer.write('trainer/trainer.yml')
# save_to_file('names.txt',names)
十、人脸识别
import cv2
import numpy as np
import os
# coding=utf-8
import urllib
import urllib.request
import hashlib
# 加载训练数据集文件
recogizer = cv2.face.LBPHFaceRecognizer_create()
recogizer.read('trainer/trainer.yml')
names = []
warningtime = 0
# 准备识别的图片
def face_detect_demo(img):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 转换为灰度
face_detector = cv2.CascadeClassifier('D:/opencv/opencv/sources/data/haarcascades/haarcascade_frontalface_alt2.xml')
face = face_detector.detectMultiScale(gray, 1.1, 5, cv2.CASCADE_SCALE_IMAGE, (100, 100), (300, 300))
# face=face_detector.detectMultiScale(gray)
for x, y, w, h in face:
cv2.rectangle(img, (x, y), (x + w, y + h), color=(0, 0, 255), thickness=2)
cv2.circle(img, center=(x + w // 2, y + h // 2), radius=w // 2, color=(0, 255, 0), thickness=1)
# 人脸识别
ids, confidence = recogizer.predict(gray[y:y + h, x:x + w])
# print('标签id:',ids,'置信评分:', confidence)
if confidence > 80:
cv2.putText(img, 'unkonw', (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1)
else:
cv2.putText(img, str(names[ids - 1]), (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1)
cv2.imshow('result', img)
# print('bug:',ids)
def name():
path = './data/jm/'
# names = []
imagePaths = [os.path.join(path, f) for f in os.listdir(path)]
for imagePath in imagePaths:
name = str(os.path.split(imagePath)[1].split('.', 2)[1])
names.append(name)
cap = cv2.VideoCapture('1.mp4')
name()
while True:
flag, frame = cap.read()
if not flag:
break
face_detect_demo(frame)
if ord(' ') == cv2.waitKey(10):
break
cv2.destroyAllWindows()
cap.release()
# print(names)
项目注意事项:
一、下载库
以上框选,这是OpenCV库中提供的分类器,需要下载库,下载链接:
GitHub - opencv/opencv: Open Source Computer Vision Library
二、问题描述
当整个屏幕是个人脸的时候就会报这个错的话,只是因为没有函数化nemes这个列表,只要将neme函数加上即可解决。
人脸识别项目下载链接:
百度网盘 请输入提取码