数据挖掘入门项目二手交易车价格预测之建模调参

news2024/11/19 2:40:07

文章目录

  • 目标
  • 步骤
    • 1. 调整数据类型,减少数据在内存中占用的空间
    • 2. 使用线性回归来简单建模
    • 3. 五折交叉验证
    • 4. 模拟真实业务情况
    • 5. 绘制学习率曲线与验证曲线
    • 6. 嵌入式特征选择
    • 6. 非线性模型
    • 7. 模型调参
      • (1) 贪心调参
      • (2)Grid Search 调参
      • (3)贝叶斯调参
  • 总结

本文数据集来自阿里天池:https://tianchi.aliyun.com/competition/entrance/231784/information
主要参考了Datawhale的整个操作流程:https://tianchi.aliyun.com/notebook/95460
小编也是第一次接触数据挖掘,所以先跟着Datawhale写的教程操作了一遍,不懂的地方加了一点点自己的理解,感谢Datawhale!

目标

了解常用的机器学习模型,并掌握机器学习模型的建模与调参流程

步骤

1. 调整数据类型,减少数据在内存中占用的空间

具体方法定义如下:
对每一列循环,将每一列的转化为对应的数据类型,在不损失数据的情况下,尽可能地减少DataFrame中每列的内存占用

def reduce_mem_usage(df):
    """ iterate through all the columns of a dataframe and modify the data type
        to reduce memory usage.        
    """
    start_mem = df.memory_usage().sum()  # memory_usage() 方法返回每一列的内存使用情况,sum() 将它们相加。
    print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
    # 对每一列循环
    for col in df.columns:
        col_type = df[col].dtype # 获取列类型
        if col_type != object:
            # 获取当前列的最小值和最大值
            c_min = df[col].min()
            c_max = df[col].max()
            if str(col_type)[:3] == 'int':
                # np.int8 是 NumPy 中表示 8 位整数的数据类型。
                # np.iinfo(np.int8) 返回一个描述 np.int8 数据类型的信息对象。
                # .min 是该信息对象的一个属性,用于获取该数据类型的最小值。
                if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
                    df[col] = df[col].astype(np.int8)
                elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
                    df[col] = df[col].astype(np.int16)
                elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
                    df[col] = df[col].astype(np.int32)
                elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
                    df[col] = df[col].astype(np.int64)  
            else:
                if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
                    df[col] = df[col].astype(np.float16)
                elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
                    df[col] = df[col].astype(np.float32)
                else:
                    df[col] = df[col].astype(np.float64)
        else:
            df[col] = df[col].astype('category') # 将当前列的数据类型转换为分类类型,以节省内存
    end_mem = df.memory_usage().sum() 
    print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))
    print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
    return df

调用上述函数查看效果:
其中,data_for_tree.csv保存的是我们在特征工程步骤中简单处理过的特征

sample_feature = reduce_mem_usage(pd.read_csv('data_for_tree.csv'))

在这里插入图片描述

2. 使用线性回归来简单建模

因为上述特征当时是为树模型分析保存的,所以没有对空值进行处理,这里简单处理一下

sample_feature.head()

在这里插入图片描述
可以看到notRepairedDamage这一列有异常值‘-’:

sample_feature = sample_feature.dropna().replace('-', 0).reset_index(drop=True)
sample_feature['notRepairedDamage'] = sample_feature['notRepairedDamage'].astype(np.float32)

建立训练数据和标签:

train_X = sample_feature.drop('price',axis=1)
train_y = sample_feature['price']

简单建模:

from sklearn.linear_model import LinearRegression
model = LinearRegression()
model = model.fit(train_X, train_y)
'intercept:'+ str(model.intercept_) # 这一行代码用于输出模型的截距(即常数项)
sorted(dict(zip(sample_feature.columns, model.coef_)).items(), key=lambda x:x[1], reverse=True) # 这行代码是用于输出模型的系数,并按照系数的大小进行排序
# sample_feature.columns 是特征的列名。
# model.coef_ 是线性回归模型的系数。
# zip(sample_feature.columns, model.coef_) 将特征列名与对应的系数打包成元组。
# dict(...) 将打包好的元组转换为字典。
# sorted(..., key=lambda x:x[1], reverse=True) 对字典按照值(系数)进行降序排序。

画图查看真实值与预测值之间的差距:

from matplotlib import pyplot as plt
subsample_index = np.random.randint(low=0, high=len(train_y), size=50) # 从训练数据中随机选择 50 个样本的索引
plt.scatter(train_X['v_9'][subsample_index], train_y[subsample_index], color='black') # 绘制真实价格与特征 'v_9' 之间的散点图
plt.scatter(train_X['v_9'][subsample_index], model.predict(train_X.loc[subsample_index]), color='blue') # 绘制模型预测价格与特征 'v_9' 之间的散点图
plt.xlabel('v_9')
plt.ylabel('price')
plt.legend(['True Price','Predicted Price'],loc='upper right')
print('The predicted price is obvious different from true price')
plt.show()

在这里插入图片描述
通过作图我们发现数据的标签(price)呈现长尾分布,不利于我们的建模预测。
对标签进行进一步分析:
画图显示标签的分布:左边是所有标签数据的一个分布,右边是去掉最大的10%标签数据之后的一个分布

import seaborn as sns
print('It is clear to see the price shows a typical exponential distribution')
plt.figure(figsize=(15,5))
plt.subplot(1,2,1) # 创建一个包含 1 行 2 列的子图,并将当前子图设置为第一个子图
sns.distplot(train_y) # 显示价格数据的直方图以及拟合的密度曲线
plt.subplot(1,2,2)
# quantile 函数来计算价格数据的第 90%分位数,然后通过布尔索引选取低于第 90 百分位数的价格数据
sns.distplot(train_y[train_y < np.quantile(train_y, 0.9)])

在这里插入图片描述
对标签进行 log(x+1) 变换,使标签贴近于正态分布:

train_y_ln = np.log(train_y + 1)

显示log变化之后的数据分布:

import seaborn as sns
print('The transformed price seems like normal distribution')
plt.figure(figsize=(15,5))
plt.subplot(1,2,1)
sns.distplot(train_y_ln)
plt.subplot(1,2,2)
sns.distplot(train_y_ln[train_y_ln < np.quantile(train_y_ln, 0.9)])

在这里插入图片描述
然后我们重新训练,再可视化

model = model.fit(train_X, train_y_ln)
print('intercept:'+ str(model.intercept_))
sorted(dict(zip(continuous_feature_names, model.coef_)).items(), key=lambda x:x[1], reverse=True)
plt.scatter(train_X['v_9'][subsample_index], train_y[subsample_index], color='black')
plt.scatter(train_X['v_9'][subsample_index], np.exp(model.predict(train_X.loc[subsample_index])), color='blue')
plt.xlabel('v_9')
plt.ylabel('price')
plt.legend(['True Price','Predicted Price'],loc='upper right')
print('The predicted price seems normal after np.log transforming')
plt.show()

可以看出结果要比上面的好一点:
在这里插入图片描述

3. 五折交叉验证

在使用训练集对参数进行训练的时候,一般会将整个训练集分为三个部分:训练集(train_set),评估集(valid_set),测试集(test_set)这三个部分。这其实是为了保证训练效果而特意设置的。

  • 测试集很好理解,其实就是完全不参与训练的数据,仅仅用来观测测试效果的数据。
  • 在实际的训练中,训练的结果对于训练集的拟合程度通常还是挺好的(初始条件敏感),但是对于训练集之外的数据的拟合程度通常就不那么令人满意了。因此我们通常并不会把所有的数据集都拿来训练,而是分出一部分来(这一部分不参加训练)对训练集生成的参数进行测试,相对客观的判断这些参数对训练集之外的数据的符合程度。这种思想就称为交叉验证(Cross Validation)

(1)使用线性回归模型,对未处理标签的特征数据进行五折交叉验证

from sklearn.model_selection import cross_val_score
from sklearn.metrics import mean_absolute_error,  make_scorer
# 下面这个函数主要实现对参数进行对数转换输入目标函数
def log_transfer(func):
    def wrapper(y, yhat):
        # np.nan_to_num 函数用于将对数转换后可能出现的 NaN 值转换为 0
        result = func(np.log(y), np.nan_to_num(np.log(yhat)))
        return result
    # 返回内部函数 wrapper,这是一个对原始函数的包装器,它将对传入的参数进行对数转换后再调用原始函数
    return wrapper
# 计算5折交叉验证得分
scores = cross_val_score(model, X=train_X, y=train_y, verbose=1, cv = 5, scoring=make_scorer(log_transfer(mean_absolute_error)))
# model 是要评估的模型对象。
# train_X 是训练数据的特征,train_y 是训练数据的目标变量。
# verbose=1 设置为 1 时表示打印详细信息。
# cv=5 表示进行 5 折交叉验证。
# scoring=make_scorer(log_transfer(mean_absolute_error)) 指定了评分标准
# 使用了 make_scorer 函数将一个自定义的评分函数 log_transfer(mean_absolute_error) 转换为一个可用于评分的评估器。
# log_transfer(mean_absolute_error) 这一步的作用就是将真实值和预测值在输入到mean_absolute_error之前进行log转换
# mean_absolute_error 是一个回归问题中常用的评估指标,用于衡量预测值与实际值之间的平均绝对误差
print('AVG:', np.mean(scores))

结果展示:
在这里插入图片描述
使用线性回归模型,对处理过标签的特征数据进行五折交叉验证:

scores = cross_val_score(model, X=train_X, y=train_y_ln, verbose=1, cv = 5, scoring=make_scorer(mean_absolute_error))
print('AVG:', np.mean(scores))

结果展示:
在这里插入图片描述
可以看见,调整之后的数据,误差明显变小
查看scores:

scores = pd.DataFrame(scores.reshape(1,-1))
scores.columns = ['cv' + str(x) for x in range(1, 6)]
scores.index = ['MAE']
scores

在这里插入图片描述

4. 模拟真实业务情况

交叉验证在某些与时间相关的数据集上可能反映了不真实的情况,比如我们不能通过2018年的二手车价格来预测2017年的二手车价格。这个时候我们可以采用时间顺序对数据集进行分隔。在本例中,我们可以选用靠前时间的4/5样本当作训练集,靠后时间的1/5当作验证集
具体操作如下:

import datetime
sample_feature = sample_feature.reset_index(drop=True)
split_point = len(sample_feature) // 5 * 4
train = sample_feature.loc[:split_point].dropna()
val = sample_feature.loc[split_point:].dropna()
train_X = train.drop('price',axis=1)
train_y_ln = np.log(train['price'] + 1)
val_X = val.drop('price',axis=1)
val_y_ln = np.log(val['price'] + 1)
model = model.fit(train_X, train_y_ln)
mean_absolute_error(val_y_ln, model.predict(val_X))

结果展示:
在这里插入图片描述

5. 绘制学习率曲线与验证曲线

def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,n_jobs=1, train_size=np.linspace(.1, 1.0, 5 )): 
    """
    模型估计器 estimator
    图的标题 title
    特征数据 X
    目标数据 y
    y轴的范围 ylim
    交叉验证分割策略 cv
    并行运行的作业数 n_jobs 
    训练样本的大小 train_size
    """
    plt.figure()  
    plt.title(title)  
    if ylim is not None:  
        plt.ylim(*ylim)  # 设置 y 轴的范围为 ylim
    plt.xlabel('Training example')  
    plt.ylabel('score')  
    # 使用 learning_curve 函数计算学习曲线的训练集得分和交叉验证集得分
    train_sizes, train_scores, test_scores = learning_curve(estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_size, scoring = make_scorer(mean_absolute_error))  
    train_scores_mean = np.mean(train_scores, axis=1)  # 计算训练集得分的均值
    train_scores_std = np.std(train_scores, axis=1)  # 计算训练集得分的标准差
    test_scores_mean = np.mean(test_scores, axis=1)  
    test_scores_std = np.std(test_scores, axis=1)  
    plt.grid()#区域  
    # 使用红色填充训练集得分的方差范围
    plt.fill_between(train_sizes, train_scores_mean - train_scores_std,  
                     train_scores_mean + train_scores_std, alpha=0.1,  
                     color="r")  
    # 使用绿色填充交叉验证集得分的方差范围
    plt.fill_between(train_sizes, test_scores_mean - test_scores_std,  
                     test_scores_mean + test_scores_std, alpha=0.1,  
                     color="g")  
    # 绘制训练集得分曲线
    plt.plot(train_sizes, train_scores_mean, 'o-', color='r',  
             label="Training score")  
    # 绘制交叉验证集得分曲线
    plt.plot(train_sizes, test_scores_mean,'o-',color="g",  
             label="Cross-validation score")  
    plt.legend(loc="best")  
    return plt 
plot_learning_curve(LinearRegression(), 'Liner_model', train_X[:1000], train_y_ln[:1000], ylim=(0.0, 0.5), cv=5, n_jobs=1)  

在这里插入图片描述

6. 嵌入式特征选择

在过滤式和包裹式特征选择方法中,特征选择过程与学习器训练过程有明显的分别。而嵌入式特征选择在学习器训练过程中自动地进行特征选择。嵌入式选择最常用的是L1正则化与L2正则化。在对线性回归模型加入两种正则化方法后,他们分别变成了岭回归与Lasso回归

对上述三种模型进行交叉验证训练,并对比结果:

from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge
from sklearn.linear_model import Lasso
# 创建一个模型实力列表
models = [LinearRegression(),
          Ridge(),
          Lasso()]
result = dict()
for model in models:
    model_name = str(model)[:-2] # 获取模型名称
    # 训练模型
    scores = cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error))
    # 收集各模型训练得分
    result[model_name] = scores
    print(model_name + ' is finished')
result = pd.DataFrame(result)
result.index = ['cv' + str(x) for x in range(1, 6)]
result

结果展示:
在这里插入图片描述
分别对三个模型训练得到的参数进行分析:

  • 一般线性回归
import seaborn as sns
model = LinearRegression().fit(train_X, train_y_ln)
print('intercept:', model.intercept_)
# 组合数据
data = pd.DataFrame({'coef_abs': abs(model.coef_), 'feature': train_X.columns})
# 画图
sns.barplot(x='coef_abs', y='feature', data=data)

展示:
在这里插入图片描述

  • 岭回归

L2正则化在拟合过程中通常都倾向于让权值尽可能小,最后构造一个所有参数都比较小的模型。因为一般认为参数值小的模型比较简单,能适应不同的数据集,也在一定程度上避免了过拟合现象。可以设想一下对于一个线性回归方程,若参数很大,那么只要数据偏移一点点,就会对结果造成很大的影响;但如果参数足够小,数据偏移得多一点也不会对结果造成什么影响,专业一点的说法是『抗扰动能力强』

import seaborn as sns
model = Ridge().fit(train_X, train_y_ln)
print('intercept:', model.intercept_)
# 组合数据
data = pd.DataFrame({'coef_abs': abs(model.coef_), 'feature': train_X.columns})
sns.barplot(x='coef_abs', y='feature', data=data)

展示:
在这里插入图片描述

  • Lasso回归
    L1正则化有助于生成一个稀疏权值矩阵,进而可以用于特征选择
import seaborn as sns
model = Lasso().fit(train_X, train_y_ln)
print('intercept:', model.intercept_)
# 组合数据
data = pd.DataFrame({'coef_abs': abs(model.coef_), 'feature': train_X.columns})
sns.barplot(x='coef_abs', y='feature', data=data)

展示:
在这里我们可以看到power、used_time等特征非常重要
在这里插入图片描述

6. 非线性模型

决策树通过信息熵或GINI指数选择分裂节点时,优先选择的分裂特征也更加重要,这同样是一种特征选择的方法。XGBoost与LightGBM模型中的model_importance指标正是基于此计算的

下面我们选择部分模型进行对比:

from sklearn.linear_model import LinearRegression
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.neural_network import MLPRegressor
from xgboost.sklearn import XGBRegressor
from lightgbm.sklearn import LGBMRegressor
models = [LinearRegression(),
          DecisionTreeRegressor(),
          RandomForestRegressor(),
          GradientBoostingRegressor(),
          MLPRegressor(solver='lbfgs', max_iter=100), 
          XGBRegressor(n_estimators = 100, objective='reg:squarederror'), 
          LGBMRegressor(n_estimators = 100)]
result = dict()
for model in models:
    model_name = str(model).split('(')[0]
    scores = cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error))
    result[model_name] = scores
    print(model_name + ' is finished')
result = pd.DataFrame(result)
result.index = ['cv' + str(x) for x in range(1, 6)]
result

结果:
在这里插入图片描述
可以看到随机森林模型在每一个fold中均取得了更好的效果!!!

7. 模型调参

在这里主要介绍三种调参方法

(1) 贪心调参

所谓贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,它所做出的仅仅是在某种意义上的局部最优解。

以lightgbm模型为例:

## LGB的参数集合:
# 损失函数
objective = ['regression', 'regression_l1', 'mape', 'huber', 'fair']
# 叶子节点数
num_leaves = [3,5,10,15,20,40, 55]
# 最大深度
max_depth = [3,5,10,15,20,40, 55]
bagging_fraction = []
feature_fraction = []
drop_rate = []
best_obj = dict()
# 计算不同选择下对应结果,其中 score最小时为最优结果
for obj in objective:
    model = LGBMRegressor(objective=obj)
    score = np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)))
    best_obj[obj] = score
    
best_leaves = dict()
for leaves in num_leaves:
    model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0], num_leaves=leaves)
    score = np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)))
    best_leaves[leaves] = score
    
best_depth = dict()
for depth in max_depth:
    model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0],
                          num_leaves=min(best_leaves.items(), key=lambda x:x[1])[0],
                          max_depth=depth)
    score = np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)))
    best_depth[depth] = score
# 画出各选择下,损失的变化
sns.lineplot(x=['0_initial','1_turning_obj','2_turning_leaves','3_turning_depth'], y=[0.143 ,min(best_obj.values()), min(best_leaves.values()), min(best_depth.values())])

在这里插入图片描述

(2)Grid Search 调参

GridSearchCV:一种调参的方法,当你算法模型效果不是很好时,可以通过该方法来调整参数,通过循环遍历,尝试每一种参数组合,返回最好的得分值的参数组合

from sklearn.model_selection import GridSearchCV
parameters = {'objective': objective , 'num_leaves': num_leaves, 'max_depth': max_depth}
model = LGBMRegressor()
clf = GridSearchCV(model, parameters, cv=5)
clf = clf.fit(train_X, train_y_ln)
clf.best_params_

得到的最佳参数为:{'max_depth': 10, 'num_leaves': 55, 'objective': 'huber'}
我们再用最佳参数来训练模型:

model = LGBMRegressor(objective='huber',
                          num_leaves=55,
                          max_depth=10)
np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)))

结果跟之前的调参是相当的:
在这里插入图片描述

(3)贝叶斯调参

贝叶斯优化通过基于目标函数的过去评估结果建立替代函数(概率模型),来找到最小化目标函数的值。贝叶斯方法与随机或网格搜索的不同之处在于,它在尝试下一组超参数时,会参考之前的评估结果,因此可以省去很多无用功。

from bayes_opt import BayesianOptimization
def rf_cv(num_leaves, max_depth, subsample, min_child_samples):
    #num_leaves: 决策树上的叶子节点数量。较大的值可以提高模型的复杂度,但也容易导致过拟合。
    # max_depth: 决策树的最大深度。控制树的深度可以限制模型的复杂度,有助于防止过拟合。
    # subsample: 训练数据的子样本比例。该参数可以用来控制每次迭代时使用的数据量,有助于加速训练过程并提高模型的泛化能力。
    # min_child_samples: 每个叶子节点所需的最小样本数。通过限制叶子节点中的样本数量,可以控制树的生长,避免过拟合。
    val = cross_val_score(
        LGBMRegressor(objective = 'regression_l1',
            num_leaves=int(num_leaves),
            max_depth=int(max_depth),
            subsample = subsample,
            min_child_samples = int(min_child_samples)
        ),
        X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)
    ).mean()
    return 1 - val
    
rf_bo = BayesianOptimization(
    rf_cv,
    {
    'num_leaves': (2, 100),
    'max_depth': (2, 100),
    'subsample': (0.1, 1),
    'min_child_samples' : (2, 100)
    }
)
# 最大化 rf_cv 函数返回的值,即最小化负的平均绝对误差
rf_bo.maximize()

结果:

1 - rf_bo.max['target']

在这里插入图片描述

总结

  • 上述我们主要通过log转换正则化模型选择参数微调等方法来提高预测的精度
  • 最后附上一些学习链接供大家参考:
  • 线性回归模型:https://zhuanlan.zhihu.com/p/49480391
  • 决策树模型:https://zhuanlan.zhihu.com/p/65304798
  • GBDT模型:https://zhuanlan.zhihu.com/p/45145899
  • XGBoost模型:https://zhuanlan.zhihu.com/p/86816771
  • LightGBM模型:https://zhuanlan.zhihu.com/p/89360721
  • 用简单易懂的语言描述「过拟合 overfitting」?https://www.zhihu.com/question/32246256/answer/55320482
  • 模型复杂度与模型的泛化能力:http://yangyingming.com/article/434/
  • 正则化的直观理解:https://blog.csdn.net/jinping_shi/article/details/52433975
  • 贪心算法: https://www.jianshu.com/p/ab89df9759c8
  • 网格调参: https://blog.csdn.net/weixin_43172660/article/details/83032029
  • 贝叶斯调参: https://blog.csdn.net/linxid/article/details/81189154

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1573295.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

IDEA/PyCharm/GoLand同时打开2个分支

背景 想对比2个分支的代码&#xff0c;或者在A分支开发时&#xff0c;需要看B分支&#xff0c;切来切去太麻烦&#xff0c;而且新写的代码还没法直接切到B分支。 操作方法 假如有A、B 2个分支。 通过git worktree为B分支新建1个worktree&#xff0c;然后通过打开新项目的方式…

谷歌在生成式人工智能领域的挑战与机遇:内部纷争与市场压力下的战略调整

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

第12届蓝桥杯省赛 ---- C/C++ C组

文章目录 1. ASC2. 空间3. 卡片4. 相乘5. 路径6.时间显示7.最少砝码8. 杨辉三角形9. 左孩子右兄弟 第12届蓝桥杯省赛&#xff0c;C/C C组真题&#xff0c;第10题不是很清楚&#xff0c;题解不敢乱放&#x1f601;&#x1f601;&#x1f601; 1. ASC 额。。。。 #include <i…

【数据库】SQL简介

SQL&#xff08;Structured Query Language&#xff0c;结构化查询语言&#xff09;是一种用于管理关系型数据库管理系统&#xff08;RDBMS&#xff09;的标准化语言。它用于访问和操作数据库中的数据&#xff0c;执行各种任务&#xff0c;如插入、更新、删除和检索数据&#x…

为何一个网卡需要配置多个IP地址?

在Linux环境中&#xff0c;一个网卡配置多个IP地址是一个常见且强大的网络管理策略&#x1f6e0;️。这种策略不仅增加了网络的灵活性和效率&#xff0c;还能满足特定的网络需求和应用场景&#x1f3af;。让我们一探究竟&#xff0c;看看在哪些情况下&#xff0c;为什么一个网卡…

可行驶区域(freespace)如何标注

可行驶区域&#xff08;freespace&#xff09;如何标注 附赠自动驾驶学习资料和量产经验&#xff1a;链接 可行驶区域的检测主要是为自动驾驶提供路径规划辅助&#xff0c;可以实现整个的路面检测&#xff0c;也可以只提取出部分的道路信息&#xff0c;不同的环境&#xff0c;…

HAL STM32主从定时器联级使用

HAL STM32主从定时器联级使用 具体介绍参考STM32参考手册 &#x1f33f;主从定时器联级&#xff1a;使用一个定时器作为另一个定时器的预分频器。 &#x1f341;时钟关系&#xff1a; &#x1f33f;TIM1 和TIM8 控制寄存器 2(TIMx_CR2)相关位&#xff1a; &#x1f516;主…

静态路由协议实验综合实验

需求&#xff1a; 1、除R5的换回地址已固定外&#xff0c;整个其他所有的网段基于192.168.1.0/24进行合理的IP地址划分。 2、R1-R4每台路由器存在两个环回接口&#xff0c;用于模拟连接PC的网段&#xff1b;地址也在192.168.1.0/24这个网络范围内。 3、R1-R4上不能直接编写到…

opencv+python(通道的分离与合并)笔记

分割图像通道&#xff1a; 通过函数mvsplit(img)&#xff1b;mv返回的通道&#xff1b; RGB有3个通道&#xff1b;灰度图只有一个通道&#xff1b; b,g,r cv2.split(img)cv2.imshow("b",b)#通道bcv2.imshow("g",g)#通道gcv2.imshow("r",r)#通道…

算法:指数的更相减损术

举例&#xff1a;当我们想求9&#xff08;3^2&#xff09;与27&#xff08;3^3&#xff09;的最大共同基&#xff0c;也就是3时&#xff0c;该怎么做呢&#xff0c;这时就要用到指数的更相减损术&#xff0c;如下图所示&#xff1a;

【mac操作】brew指令集

brew指令集记录 1. brew search 【软件名称】2. rm -rf $(brew --cache)3. brew install 【软件名】4. brew uninstall 【软件名】5. 未完待续&#xff0c;&#xff0c;&#xff0c;&#xff0c; 官网路径&#xff1a; Homebrew官网 最上面就来一个homebrew安装指令吧&#xf…

用讲故事的方式学Pandas的数据结构之Series

在一个遥远的数据王国中&#xff0c;有一个被称为Pandas的魔法图书馆&#xff0c;它拥有处理数据的强大力量。图书馆里有三位伟大的守护者&#xff0c;人们称他们为“数据处理三剑客”&#xff1a;Numpy&#xff0c;Pandas&#xff0c;和Matplotlib。今天&#xff0c;我们将聚焦…

R语言实现:统计学及计量专业中的多种平均值计算方式

平均值在计量专业和统计学中有着广泛的应用如&#xff1a;描述数据集中趋势、比较不同组数据、评估数据的代表性、决策和判断、回归分析概率统计与财务分析等。此外&#xff0c;在计量专业中&#xff0c;平均值还被广泛应用于各种测量和校准过程中&#xff0c;以确保测量结果的…

AI大语言模型GPT —— R 生态环境领域数据统计分析

自2022年GPT&#xff08;Generative Pre-trained Transformer&#xff09;大语言模型的发布以来&#xff0c;它以其卓越的自然语言处理能力和广泛的应用潜力&#xff0c;在学术界和工业界掀起了一场革命。在短短一年多的时间里&#xff0c;GPT已经在多个领域展现出其独特的价值…

博客部署001-centos安装docker

1、安装docker 1.1 卸载旧版本的 Docker sudo yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \docker-latest-logrotate \docker-logrotate \docker-engine1.2 设置 Docker 仓库 安装 Docker Engine 之前&#xff0c;首先需要设置…

观测线程的工具——jconsole

joconsole的简单使用 joncole位置在jdk/bin路径中&#xff0c;在进入路径后可以查找到jconsole.exe的应用程序。如图&#xff1a; 双击创建jconsole进程&#xff0c;可以在里面选择所要观测的java文件。 以我的代码为例&#xff1a; class MyThread extends Thread {Overrid…

算法基础课-搜索与图论

DFS 题目链接&#xff1a;842. 排列数字 - AcWing题库 思路&#xff1a;写的很好的题解AcWing 842. 排列数字--深度优先遍历代码注释 - AcWing #include<bits/stdc.h>using namespace std; int n; int st[10]; vector<int> a; void dfs(){if(a.size() n){for(in…

Vue 有哪些常用的指令

目录 1. 指令 v-html 1.1. 作用 1.2. 语法 1.3. 练习 2. 指令 v-show 2.1. 作用 2.2. 语法 3. 原理 4. 场景 3. 指令 v-if 3.1. 作用 3.2. 语法 3.3. 原理 3.4. 场景 4. 指令 v-else与 v-else-if 4.1. 作用 4.2. 语法 4.3. 注意 4.4. 使用场景 5. 指令 v-on 5…

详解 Redis 在 Centos 系统上的安装

文章目录 详解 Redis 在 Centos 系统上的安装1. 使用 yum 安装 Redis 52. 创建符号链接3. 修改配置文件4. 启动和停止 Redis 详解 Redis 在 Centos 系统上的安装 1. 使用 yum 安装 Redis 5 如果是Centos8&#xff0c;yum 仓库中默认的 redis 版本就是5&#xff0c;直接 yum i…

Pytorch转onnx

pytorch 转 onnx 模型需要函数 torch.onnx.export。 def export(model: Union[torch.nn.Module, torch.jit.ScriptModule, torch.jit.ScriptFunction],args: Union[Tuple[Any, ...], torch.Tensor],f: Union[str, io.BytesIO],export_params: bool True,verbose: bool False…