TCP/IP 网络模型有哪几层

news2024/11/19 8:24:20

备注:本文参考小林coding相关内容,侵权请联系作者删除

1.应用层

最上层的,也是我们能直接接触到的就是应用层Application Layer),我们电脑或手机使用的应用软件都是在应用层实现。那么,当两个不同设备的应用需要通信的时候,应用就把应用数据传给下一层,也就是传输层。

所以,应用层只需要专注于为用户提供应用功能,比如 HTTP、FTP、Telnet、DNS、SMTP等。

应用层是不用去关心数据是如何传输的,就类似于,我们寄快递的时候,只需要把包裹交给快递员,由他负责运输快递,我们不需要关心快递是如何被运输的。

而且应用层是工作在操作系统中的用户态,传输层及以下则工作在内核态。

2.传输层

应用层的数据包会传给传输层,传输层Transport Layer)是为应用层提供网络支持的。

 

在传输层会有两个传输协议,分别是 TCP 和 UDP。

TCP 的全称叫传输控制协议(Transmission Control Protocol),大部分应用使用的正是 TCP 传输层协议,比如 HTTP 应用层协议。TCP 相比 UDP 多了很多特性,比如流量控制、超时重传、拥塞控制等,这些都是为了保证数据包能可靠地传输给对方。

UDP 相对来说就很简单,简单到只负责发送数据包,不保证数据包是否能抵达对方,但它实时性相对更好,传输效率也高。当然,UDP 也可以实现可靠传输,把 TCP 的特性在应用层上实现就可以,不过要实现一个商用的可靠 UDP 传输协议,也不是一件简单的事情。

应用需要传输的数据可能会非常大,如果直接传输就不好控制,因此当传输层的数据包大小超过 MSS(TCP 最大报文段长度) ,就要将数据包分块,这样即使中途有一个分块丢失或损坏了,只需要重新发送这一个分块,而不用重新发送整个数据包。在 TCP 协议中,我们把每个分块称为一个 TCP 段TCP Segment)。

 

当设备作为接收方时,传输层则要负责把数据包传给应用,但是一台设备上可能会有很多应用在接收或者传输数据,因此需要用一个编号将应用区分开来,这个编号就是端口

比如 80 端口通常是 Web 服务器用的,22 端口通常是远程登录服务器用的。而对于浏览器(客户端)中的每个标签栏都是一个独立的进程,操作系统会为这些进程分配临时的端口号。

由于传输层的报文中会携带端口号,因此接收方可以识别出该报文是发送给哪个应用。

3.网络层

传输层可能大家刚接触的时候,会认为它负责将数据从一个设备传输到另一个设备,事实上它并不负责。

实际场景中的网络环节是错综复杂的,中间有各种各样的线路和分叉路口,如果一个设备的数据要传输给另一个设备,就需要在各种各样的路径和节点进行选择,而传输层的设计理念是简单、高效、专注,如果传输层还负责这一块功能就有点违背设计原则了。

也就是说,我们不希望传输层协议处理太多的事情,只需要服务好应用即可,让其作为应用间数据传输的媒介,帮助实现应用到应用的通信,而实际的传输功能就交给下一层,也就是网络层Internet Layer)。

 网络层最常使用的是 IP 协议(Internet Protocol),IP 协议会将传输层的报文作为数据部分,再加上 IP 包头组装成 IP 报文,如果 IP 报文大小超过 MTU(以太网中一般为 1500 字节)就会再次进行分片,得到一个即将发送到网络的 IP 报文。

 

网络层负责将数据从一个设备传输到另一个设备,世界上那么多设备,又该如何找到对方呢?因此,网络层需要有区分设备的编号。

我们一般用 IP 地址给设备进行编号,对于 IPv4 协议, IP 地址共 32 位,分成了四段(比如,192.168.100.1),每段是 8 位。只有一个单纯的 IP 地址虽然做到了区分设备,但是寻址起来就特别麻烦,全世界那么多台设备,难道一个一个去匹配?这显然不科学。

因此,需要将 IP 地址分成两种意义:

  • 一个是网络号,负责标识该 IP 地址是属于哪个「子网」的;
  • 一个是主机号,负责标识同一「子网」下的不同主机;

怎么分的呢?这需要配合子网掩码才能算出 IP 地址 的网络号和主机号。

举个例子,比如 10.100.122.0/24,后面的/24表示就是 255.255.255.0 子网掩码,255.255.255.0 二进制是「11111111-11111111-11111111-00000000」,大家数数一共多少个1?不用数了,是 24 个1,为了简化子网掩码的表示,用/24代替255.255.255.0。

知道了子网掩码,该怎么计算出网络地址和主机地址呢?

将 10.100.122.2 和 255.255.255.0 进行按位与运算,就可以得到网络号,如下图:

 

将 255.255.255.0 取反后与IP地址进行进行按位与运算,就可以得到主机号。

大家可以去搜索下子网掩码计算器,自己改变下「掩码位」的数值,就能体会到子网掩码的作用了。

 

那么在寻址的过程中,先匹配到相同的网络号(表示要找到同一个子网),才会去找对应的主机。

除了寻址能力, IP 协议还有另一个重要的能力就是路由。实际场景中,两台设备并不是用一条网线连接起来的,而是通过很多网关、路由器、交换机等众多网络设备连接起来的,那么就会形成很多条网络的路径,因此当数据包到达一个网络节点,就需要通过路由算法决定下一步走哪条路径。

路由器寻址工作中,就是要找到目标地址的子网,找到后进而把数据包转发给对应的网络内。

 

所以,IP 协议的寻址作用是告诉我们去往下一个目的地该朝哪个方向走,路由则是根据「下一个目的地」选择路径。寻址更像在导航,路由更像在操作方向盘

4.网络接口层

生成了 IP 头部之后,接下来要交给网络接口层Link Layer)在 IP 头部的前面加上 MAC 头部,并封装成数据帧(Data frame)发送到网络上。

 

IP 头部中的接收方 IP 地址表示网络包的目的地,通过这个地址我们就可以判断要将包发到哪里,但在以太网的世界中,这个思路是行不通的。

什么是以太网呢?电脑上的以太网接口,Wi-Fi接口,以太网交换机、路由器上的千兆,万兆以太网口,还有网线,它们都是以太网的组成部分。以太网就是一种在「局域网」内,把附近的设备连接起来,使它们之间可以进行通讯的技术。

以太网在判断网络包目的地时和 IP 的方式不同,因此必须采用相匹配的方式才能在以太网中将包发往目的地,而 MAC 头部就是干这个用的,所以,在以太网进行通讯要用到 MAC 地址。

MAC 头部是以太网使用的头部,它包含了接收方和发送方的 MAC 地址等信息,我们可以通过 ARP 协议获取对方的 MAC 地址。

所以说,网络接口层主要为网络层提供「链路级别」传输的服务,负责在以太网、WiFi 这样的底层网络上发送原始数据包,工作在网卡这个层次,使用 MAC 地址来标识网络上的设备。

5.总结

综上所述,TCP/IP 网络通常是由上到下分成 4 层,分别是应用层,传输层,网络层和网络接口层

 再给大家贴一下每一层的封装格式:

 

网络接口层的传输单位是帧(frame),IP 层的传输单位是包(packet),TCP 层的传输单位是段(segment),HTTP 的传输单位则是消息或报文(message)。但这些名词并没有什么本质的区分,可以统称为数据包。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/157179.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

高并发系统设计 -- 登录系统设计

同源策略 同源策略是一种安全策略。是游览器最核心最基本的安全功能。防止XSS,CSFR等攻击具体表现是游览器在执行脚本之前,会判断脚本是否与打开的网页是同源的,也就是协议,域名,端口是否都相同,相同就是同…

记录--前端性能监控初步实战

这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 前言 在当下前后端分离的主流环境下,前端部分的优化变得越来越重要。为了提升前端的性能和用户体验,我觉得可能需要从三个维度采集数据进行分析。 前端埋点。通过埋点收集和统计…

SCRM与CRM的区别

当私域流量的概念兴起时,企业直接触达用户的场景也越来越丰富,SCRM形式的私域运营已然成为很多企业数字化转型布局的关键阵地。 前言 当私域流量的概念兴起时,企业直接触达用户的场景也越来越丰富,SCRM形式的私域运营已然成为很多…

服务器部署所有前后端分离项目

1、Linux服务器安装好jdk、mysql、redis、node 2、拉取最新代码 gitee仓库项目地址:https://gitee.com/y_project/RuoYi-Vue 拉取代码到本地 3、修改后端配置 3.1、修改系统内上传文件位置的配置: 默认是windows系统的配置,将此配置修改…

JMeter接口测试使用教程哪里有?

JMeter接口测试使用教程哪里有?接口测试是测试工程师的必备技能之一,运用JMeter工具一步步实现接口请求,数据参数化,断言等操作,通过常见的企业实际测试场景详解JMeter各项技术使用,最后结合Jenkins持续集成…

Django搭建个人博客Blog-Day01

创建虚拟环境虚拟环境相当于一个抽屉,在这个抽屉里面安装的任何软件,都不会影响到其他抽屉,所以利用虚拟环境就可以做到同时安装不同版本的第三方库,而互不影响。使用虚拟环境的目的是为了防止一些第三方库出现版本不兼容问题&…

c++11 标准模板(STL)(std::forward_list)(五)

定义于头文件 <forward_list> template< class T, class Allocator std::allocator<T> > class forward_list;(1)(C11 起)namespace pmr { template <class T> using forward_list std::forward_list<T, std::pmr::polymorphic_…

当我们在谈论DataOps时,我们到底在谈论什么

1. DataOps到底是什么&#xff1f; 伴随着全球数字化转型的高速发展&#xff0c;在云计算、物联网、5G、边缘计算、元宇宙等新技术的驱动下&#xff0c;数据爆炸的时代已经来临。IDC Global DataSphere显示&#xff0c;2021年&#xff0c;全球数据总量达到了84.5ZB&#xff0c…

Java多线程案例——阻塞队列(生产者消费者模型)

一&#xff0c;阻塞队列1.阻塞队列的概念和作用阻塞队列同数据结构中的队列一样都遵守“先进先出”的原则&#xff08;不了解队列相关知识的朋友请查看之前队列的博文&#xff1a;(6条消息) 栈和队列&#xff08;内附模拟实现代码&#xff09;_徐憨憨&#xff01;的博客-CSDN博…

功率放大模块如何选择(安泰功率放大器模块产品介绍)

功率放大器模块系列产品介绍 一、功率放大模块介绍 功率放大模块&#xff1a; 功率放大模块具有体积小&#xff0c;集成度高&#xff0c;使用方便&#xff0c;应用广泛等优点&#xff0c;凭借着输出频率广、输出电压高、输出功率大等特性&#xff0c;能够广泛应用在各种领域…

动态范围控制原理

DRC介绍 开门见山&#xff0c;动态范围的定义就是信号的最大幅值和最小幅值比值的对数(单位dB)&#xff0c; 动态范围会受到系统中各个环节的影响。例如同样是这段音乐&#xff0c;在一个40dB背景噪声的环境中播放&#xff0c;那么由于掩蔽效应等因素的影响&#xff0c;最终实际…

前端跳转第三方网页中间页

前端跳转安全提示 掘金跳转中间页背景介绍跳转过渡页的优点实现原理解析哈喽啊小伙伴们久等了 消失了有半年了 &#xff0c;因为个人工作原因没腾出时间给大家分享日常踩坑和特殊功能的讲解。不过这次我回来了就要好好分享了背景介绍 前端小伙伴一定知道CSDN 和 稀土掘金 两大…

Dev-C++下载安装详细教程

文章目录前言一、下载Dev-C二、安装Dev-C三、使用Dev-C打印HelloWorld总结前言 本文总结了关于Dev-C下载与安装的详细过程&#xff0c;并使用Dev-C打印了“Hello World!”。本篇博客面向C语言初学者&#xff0c;或者考研复试的学生使用&#xff0c;因为大部分学校的考研复试都使…

为什么 TCP 建立连接需要三次握手

TCP 协议是我们几乎每天都会接触到的网络协议&#xff0c;绝大多数网络连接的建立都是基于 TCP 协议的&#xff0c;学过计算机网络或者对 TCP 协议稍有了解的人都知道 —— 使用 TCP 协议建立连接需要经过三次握手&#xff08;three-way handshake&#xff09;。 如果让我们简…

多线程案例-线程池

1.什么是线程池线程存在的意义是当使用进程进行并发编程太重了,此时引入了一个"轻量级的"进程-线程.创建线程比创建进程更高效,销毁线程比销毁进程更高效,调度线程比调度进程更高效..此时我们就用多线程来代替进程进行并发编程了,但是随着对性能的要求的提高,线程相对…

大数据必学Java基础(一百一十八):什么是Maven和它的下载整合

文章目录 什么是Maven和它的下载整合 一、什么是Maven 二、IDEA默认整合了Maven 三、下载地址

【Linux】RHEL8 中nmcli使用,必备!

redhat8中nmcli日常使用 第 2 章 配置以太网连接 Red Hat Enterprise Linux 为管理员提供不同的选项来配置以太网连接。例如&#xff1a; 在命令行中使用 nmcli 配置连接。使用 nmtui 在基于文本的用户界面中配置连接。使用 RHEL 系统角色在一个或多个主机上自动配置连接。使…

电脑小问题:定时关机的设置

设置定时关机生活中&#xff0c;我们有时候需要对电脑进行定时关机。那么&#xff0c;如何设置定时关机呢&#xff1f;步骤如下&#xff1a; 1. 按 win R &#xff0c;弹出命令窗口&#xff0c;输入 taskschd.msc &#xff0c;点击确定。 2. 弹出任务计划程序窗口&#xff0c;…

使用ResNet34实现CIFAR10数据集的训练

如果对你有用的话&#xff0c;希望能够点赞支持一下&#xff0c;这样我就能有更多的动力更新更多的学习笔记了。&#x1f604;&#x1f604; 使用ResNet进行CIFAR-10数据集进行测试&#xff0c;这里使用的是将CIFAR-10数据集的分辨率扩大到32X32&#xff0c;因为算力相关的…

摘要/哈希/散列算法MD5 SHA1 SHA256 SHA512的区别和MAC算法

一、摘要算法大致都要经过以下步骤 1. 明文数据预处理 1.1 填充比特 MD5、SHA1、SHA256 的分组长度都是512bit 需要填充比特使其位长对512求余的结果等于448 SHA512 的分组长度是 1024bit 需要填充比特使其对1024求余的结果等于896 相同&am…