向量数据库 | AI时代的航道灯塔

news2025/1/22 17:51:32

向量数据库 | AI时代的航道灯塔

  • 什么是向量检索服务
    • 拍照搜商品
  • 你使用过向量数据库吗?使用体验?
  • 为什么向量数据库能借由大模型引起众多关注
  • 向量数据库在当前AI热潮中是昙花一现,还是未来AI时代的航道灯塔?

今天的话题主要是讨论向量数据库,在进入正文之前,先了解一下什么是向量检索服务,了解了向量检索服务,自然也就明白了什么是向量数据库。

什么是向量检索服务

节录一段官方关于向量检索服务的描述:【向量检索服务基于阿里云自研的向量引擎 Proxima 内核,提供具备水平拓展、全托管、云原生的高效向量检索服务。向量检索服务将强大的向量管理、查询等能力,通过简洁易用的 SDK/API 接口透出,方便在大模型知识库搭建、多模态 AI 搜索等多种应用场景上集成。】 向量检索服务产品首页:https://www.aliyun.com/product/ai/dashvector
在这里插入图片描述
其实,通过向量检索服务的定义还是不太容易理解什么是向量数据库,毕竟官方的定义往往比较专业,专业带来的结果就是晦涩难懂。那么我在这里基于一个大家在日常生活中经常会用到的场景来解释一下。

拍照搜商品

拍照搜商品用官方的话语描述就是【电商智能搜索和偏好推荐场景】,怎么理解呢?在日常生活中你走在大街上,当你看到某个东西觉得不错,比如衣服、鞋子、手办等等,那么你是否会拿出手机,点开购物APP的拍照搜商品呢?那么这个时候你用到的就是【电商智能搜索】,而当你搜索完一件商品之后,不管是通过图片还是文字搜索,购物APP都会在首页或者搜索栏下面为你推荐相似的商品,这就是【偏好推荐场景】。而你拍照搜商品或者文本搜商品,用到的数据库,就叫做【向量数据库】。到这里,你还会觉得向量数据库只是AI热潮中是昙花一现吗?
为了更好的理解什么是【电商智能搜索和偏好推荐场景】,这里我查阅了官方的描述,还是可以理解的,节录如下:【在电商智能搜索和偏好推荐场景中,向量数据库可以实现基于向量相似度的搜索和推荐功能。例如一个电商平台中包含了各种商品的图像和描述信息,用户在搜索商品时,可以通过图像或者描述信息查询相关的商品,并且还希望能够实现推荐功能,自动向用户推荐可能感兴趣的商品。
用户只需要先将商品的图像和描述信息使用Embedding技术转换为向量表示,并将其存储到向量数据库中。当用户输入查询请求时,向量检索服务可以将其转换为向量表示,然后计算查询向量与向量数据库中所有商品向量的相似度,然后返回相似度最高的几个商品向量。另外,还可以基于用户的历史行为和偏好通过向量检索服务将用户的历史浏览记录和购买记录转化为向量表示,并在向量数据库中查询与该向量最相似以及相似度较高的商品向量,为用户推荐可能感兴趣的商品,提供更加智能和个性化的服务、更加高效和优秀的性能与购买体验。】
在这里插入图片描述
到这里,我想大家对于向量数据库,或者说对于向量检索服务,一定都会有一个比较明确的认知了吧,下面再来进入今天的话题讨论。

你使用过向量数据库吗?使用体验?

基于上面关于向量检索服务的介绍,我想大家应该都用过向量数据库了,只是你是在无意之间用过的。只要你有过网购,那么你都可以很认真的说:我用过向量数据库,并且体验还很不错。不管你是在淘宝、京东、抖音网购,不管你是以拍照搜商品还是文本搜商品,你用到的基本都是向量数据库。当然我不能保证全部都是,毕竟内部检索的核心技术我是无法知晓的。但是从用过的向量数据库的体验感来说,不管是拍照搜商品还是文本搜商品,体验感都很不错,数据返回很快,也都是自己有意向的商品。

为什么向量数据库能借由大模型引起众多关注

对于向量数据库来说,单独拿出来的向量数据库可以应用的场景有限,因而关注度不多。但是随着大模型深度学习的发展,大模型需要利用向量来表示复杂的数据,向量数据库能够高效存储和检索这些高维向量数据,为大模型提供强大的数据支撑。另外,向量数据库可以通过关联真实世界的数据点,如实体、关系等,构建知识图谱,进而支持模型查询和验证语义信息,从而降低模型输出错误的概率。在大模型中,需要处理的数据量极大,传统的关系型数据库几乎无法满足性能需求。而向量数据库由于其内部优化和并行处理能力,可以高效地处理大规模数据集,提供快速的查询和算法执行速度。
这也就是向量检索服务的另一个应用场景【自然语言处理等AI问答系统场景】,下面节录一段这个应用场景的官方描述:【问答系统是属于自然语言处理领域的常见现实应用。典型的问答系统比如通义千问、ChatGPT、在线客户服务系统、QA聊天机器人等。例如在一个问答系统,其中包含了一些预定义的问题和对应的答案。用户希望能够根据输入的问题,自动匹配到最相似的预定义问题,并返回对应的答案。为了实现此功能,首先可以通过向量检索服务将预定义的问题和答案转换为向量表示,并将其存储到向量数据库中。其次当用户输入问题时,向量检索服务可以将其转换为向量表示,并在向量数据库中查询与该向量最相似的问题向量。然后使用模型训练、问答推理、后期优化等步骤,实现类似通义千问、ChatGPT等的语言智能交互体系。】
在这里插入图片描述
到这里,向量数据库为大模型提供了这么大的助力,那么向量数据库借由大模型引起众多关注也就顺理成章了。

向量数据库在当前AI热潮中是昙花一现,还是未来AI时代的航道灯塔?

眼下的AI热潮、大模型等,离不开向量数据库的助力,那么向量数据库可以说足以作为当前AI热潮的基石存在,那么基于此,向量数据库在当前AI热潮中自然也就不是昙花一现,而是AI时代的航道灯塔。
在这里插入图片描述
向量数据库在当下AI热潮中的作用,不管你说他是基石还是灯塔,向量数据库都担得起。未来的AI时代,数据体量只会更加庞大,在目前已知的数据库,也就只有向量数据库足以高效存储和检索这些高维向量数据,为AI提供强大的数据支撑,因此向量数据库必是未来AI时代的航道灯塔。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1571388.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

华清远见STM32MP157开发板助力嵌入式大赛ST赛道MPU应用方向项目开发

第七届(2024)全国大学生嵌入式芯片与系统设计竞赛(以下简称“大赛”)已经拉开帷幕,大赛的报名热潮正席卷而来。嵌入式大赛截止今年已连续举办了七届,为教育部认可的全国普通高校大学生国家级A类赛事&#x…

Linux制作C++静态库和动态库并使用示例

创建动态库&#xff1a; 编写源文件&#xff1a; // sub.h 显式调用 #include <iostream>extern "C" int sub(int a, int b);// sub.cpp #include "sub.h"int sub(int a, int b) {return a - b; }// quadrature.h 隐式调用 #include <iostream&…

云服务器centos提示 Cannot prepare internal mirrorlist: No URLs in mirrorlist的解决办法

yum update -y CentOS-8 - AppStream 118 B/s | 38 B 00:00 Error: Failed to download metadata for repo AppStream: Cannot prepare internal mirrorlist: No URLs in mirrorlist 执行下面的命令就可…

LeetCode题练习与总结:合并区间--56

一、题目描述 示例 1&#xff1a; 输入&#xff1a;intervals [[1,3],[2,6],[8,10],[15,18]] 输出&#xff1a;[[1,6],[8,10],[15,18]] 解释&#xff1a;区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].示例 2&#xff1a; 输入&#xff1a;intervals [[1,4],[4,5]] 输出&a…

springCloudAlibaba集成gateWay实战(详解)

一、初识网关&#xff1f; 1、网关介绍 ​ 在微服务架构中&#xff0c;一个系统会被拆分为很多个微服务。那么作为客户端要如何去调用这么多的微服务呢&#xff1f;如果没有网关的存在&#xff0c;我们只能在客户端记录每个微服务的地址&#xff0c;然后分别去调用。这样的话…

我与C++的爱恋:类与对象(一)

​ ​ &#x1f525;个人主页&#xff1a;guoguoqiang. &#x1f525;专栏&#xff1a;我与C的爱恋 ​C语言是面向过程的&#xff0c;关注的是过程&#xff0c;分析出求解问题的步骤&#xff0c;通过函数调用逐步解决问题。 C是基于面向对象的&#xff0c;关注的是对象&…

【每日力扣】198.打家劫舍与213.打家劫舍II与337.打家劫舍 III

&#x1f525; 个人主页: 黑洞晓威 &#x1f600;你不必等到非常厉害&#xff0c;才敢开始&#xff0c;你需要开始&#xff0c;才会变的非常厉害 198.打家劫舍 力扣题目链接(opens new window) 你是一个专业的小偷&#xff0c;计划偷窃沿街的房屋。每间房内都藏有一定的现金&…

谷歌AI搜索革新:探索高级搜索服务背后的未来趋势

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

Redis -- 缓存穿透问题解决思路

缓存穿透 &#xff1a;缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在&#xff0c;这样缓存永远不会生效&#xff0c;这些请求都会打到数据库。 常见的解决方案有两种&#xff1a; 缓存空对象 优点&#xff1a;实现简单&#xff0c;维护方便 缺点&#xff1a; 额外…

STM32之HAL开发——不同系列SPI功能对比(附STM32Cube配置)

不同系列STM32——SPI框图 F1系列框图 F4系列框图 TI模式时序图特性 F7系列框图 H7系列框图 注意&#xff1a;F7系列以及H7系列支持Quad-SPI模式&#xff0c;可以连接单&#xff0c;双或者四条数据线的Flash存储介质。 SPI——Cube配置流程 RCC时钟源配置 SYS系统调试模式配…

【SCI绘图】【箱型图系列1 python】多类对比及各类下属子类对比

SCI&#xff0c;CCF&#xff0c;EI及核心期刊绘图宝典&#xff0c;爆款持续更新&#xff0c;助力科研&#xff01; 本期分享&#xff1a; 【SCI绘图】【箱型图系列1】多类对比各类下属子类对比 文末附带完整代码&#xff1a; 1.环境准备 python 3 from matplotlib import p…

Go语言hash/fnv应用实战:技巧、示例与最佳实践

Go语言hash/fnv应用实战&#xff1a;技巧、示例与最佳实践 引言hash/fnv概览使用hash/fnv的初步步骤导入hash/fnv库创建哈希器实例 hash/fnv在实际开发中的应用生成唯一标识符数据分片与负载均衡快速查找 高级技巧和最佳实践避免哈希碰撞动态调整哈希表大小利用sync.Pool优化哈…

【蓝桥杯】GCD与LCM

一.概述 最大公约数&#xff08;GCD&#xff09;和最小公倍数&#xff08;Least Common Multiple&#xff0c;LCM&#xff09; 在C中&#xff0c;可以使用 std::__gcd(a, b)来计算最大公约数 1.欧几里德算法/辗转相除法 int gcd(int a,int b){return b?gcd(b, a%b):a; } 2…

HTML5动画设计工具 Hype 4 Pro v4.1.14中文激活版

Hype Pro是一款功能丰富、易用且灵活的HTML5动画设计工具&#xff0c;适用于设计师、开发者和创作者创建各种精美的交互式网页动画。它的强大功能和可视化编辑界面使用户能够快速而轻松地实现复杂的动画效果&#xff0c;同时支持多种输出格式和交互方式&#xff0c;满足用户对网…

内网安全之-kerberos协议

kerberos协议是由麻省理工学院提出的一种网络身份验证协议&#xff0c;提供了一种在开放的非安全网络中认证识别用户身份信息的方法。它旨在通过使用秘钥加密技术为客户端/服务端应用提供强身份验证&#xff0c;使用kerberos这个名字是因为需要三方的共同参与才能完成一次认证流…

中科驭数DPU技术开放日秀“肌肉”:云原生网络、RDMA、安全加速、低延时网络等方案组团亮相

2024年3月29日&#xff0c;中科驭数以“DPU构建高性能云算力底座”为主题的线上技术开放日活动成功举办。在开放日上&#xff0c;中科驭数集中展现了其在低时延网络、云原生网络及智算中心网络三大关键场景下的技术成果与五大核心DPU解决方案&#xff0c;凸显了中科驭数在高性能…

RDD算子(四)、血缘关系、持久化

1. foreach 分布式遍历每一个元素&#xff0c;调用指定函数 val rdd sc.makeRDD(List(1, 2, 3, 4)) rdd.foreach(println) 结果是随机的&#xff0c;因为foreach是在每一个Executor端并发执行&#xff0c;所以顺序是不确定的。如果采集collect之后再调用foreach打印&#xf…

使用CSS计数器,在目录名称前加上了序号,让目录看起来更加井然有序

目录&#xff08;Text of Contents缩写为TOC&#xff09;&#xff0c;其实就是一篇文章的概要或简述。这好比&#xff0c;去书店买书&#xff0c;先是被这本书的标题所吸引&#xff0c;而后我们才会&#xff0c;翻开这本书目录&#xff0c;看看这本书主要是在讲些什么&#xff…

Claude 3 on Amazon Bedrock 结合多智能体助力 Altrubook AI 定义消费者 AI 新范式

关于 Altrubook AI 智能消费决策机器人 Altrubook 是全球首创场景化智能决策机器人&#xff0c;由国内外大厂等前员工共同研发&#xff0c;具有定制化 IP 决策机器人、沉浸式购物体验和需求匹配优化等独特优势。目前&#xff0c;Altrubook AI 已完成与 Claude 3 on Amazon Bedr…

【深度优先】【树上倍增 】2846. 边权重均等查询

本文涉及知识点 深度优先 树上倍增 LeetCode2846. 边权重均等查询 现有一棵由 n 个节点组成的无向树&#xff0c;节点按从 0 到 n - 1 编号。给你一个整数 n 和一个长度为 n - 1 的二维整数数组 edges &#xff0c;其中 edges[i] [ui, vi, wi] 表示树中存在一条位于节点 ui…