Stable Diffusion扩散模型【详解】小白也能看懂!!

news2025/1/18 21:04:00

文章目录

    • 1、Diffusion的整体过程
    • 2、加噪过程
      • 2.1 加噪的具体细节
      • 2.2 加噪过程的公式推导
    • 3、去噪过程
      • 3.1 图像概率分布
    • 4、损失函数
    • 5、 伪代码过程

此文涉及公式推导,需要参考这篇文章: Stable Diffusion扩散模型推导公式的基础知识

1、Diffusion的整体过程

扩散过程是模拟图像加噪的逆向过程,也就是实现去噪的过程,
加噪是如下图从右到左的过程,称为反向扩散过程,
去噪是从左往右的过程,称为前向扩散过程,

在这里插入图片描述

2、加噪过程

加噪过程如下图,下一时刻的图像是在上一时刻图像的基础上加入噪音生成的,
图中公式的含义: x t x_t xt表示 t 时刻的图像, ϵ t \epsilon_t ϵt 表示 t 时刻生成的随机分布的噪声图像, β t \beta_t βt表示 t 时刻指定的常数,不同时刻的 β t \beta_t βt不同,随着时间 t 的递增而增加,但需要注意 β t \beta_t βt的值始终是比较小的,因为要让图像的数值占较大的比例,

在这里插入图片描述

2.1 加噪的具体细节

A、将图像 x x x像素值映射到[-1,1]之间

图像加噪不是在原有图像上进行加噪的,而是通过把图片的每个像素的值转换为-1到1之间,比如像素的值是 x x x,则需要经过下面公式的处理 x 255 × 2 − 1 \frac{x}{255}\times2-1 255x×21,转换到范围是-1到1之间,

代码:

def get_transform():
    class RescaleChannels(object):
        def __call__(self, sample):
            return 2 * sample - 1

    return torchvision.transforms.Compose([torchvision.transforms.ToTensor(), RescaleChannels()])

B、生成一张尺寸相同的噪声图片,像素值服从标准正态分布
ϵ ∼ N ( 0 , 1 ) \epsilon \sim N(0,1) ϵN(0,1)

x = {Tensor:(2, 3, 32, 32)}
noise = torch.randn_like(x)

C、 α \alpha α β \beta β
每个时刻的 β t \beta_t βt都各不相同,0 < β t \beta_t βt< 1,因为 β t \beta_t βt是作为权重存在的,且 β 1 < β 2 < β 3 < β T − 1 < β T \beta_1< \beta_2< \beta_3< \beta_{T-1}< \beta_T β1<β2<β3<βT1<βT

代码:

betas = generate_linear_schedule(
    args.num_timesteps,
    args.schedule_low * 1000 / args.num_timesteps,
    args.schedule_high * 1000 / args.num_timesteps)

β \beta β的取值代码,比如 β 1 \beta_1 β1取值low, β T \beta_T βT取值high,

# T:1000 Low/β1: 0.0001 high/βT: 0.02
def generate_linear_schedule(T, low, high):
    return np.linspace(low, high, T)

α t = 1 − β t \alpha_t=1-\beta_t αt=1βt,alphas = 1.0 - betas

alphas = 1.0 - betas
alphas_cumprod = np.cumprod(alphas)
to_torch = partial(torch.tensor, dtype=torch.float32)
self.registerbuffer("betas", totorch(betas))
self.registerbuffer("alphas", totorch(alphas))
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
self.register_buffer("sqrt_alphas_cumpnod", to_torch(np.sqrt(alphas_cumprod)))
self.register_buffer("sart_one_minus_alphas_cumprod", to_torch(np.sqrt(1 - alphas_cumprod)))
self.registerbuffer("reciprocal sart_alphas", totorch(np.sart(1 / alphas)))
self.register_buffer("remove_noise_coeff", to_torch(betas / np.sqrt(1 - alphas_cumprod)))
self.registerbuffer("siqma",to_torch(np.sqrt(betas)))

D、任一时刻的图像 x t x_t xt都可以由原图像 x 0 x_0 x0直接生成(可以由含 x 0 x_0 x0的公式直接表示)

x t x_t xt x 0 x_0 x0的关系: x t = 1 − α t ‾ ϵ + α t ‾ x 0 x_t=\sqrt{1-\overline{\alpha_t}}\epsilon+\sqrt{\overline{\alpha_t}}x_0 xt=1αt ϵ+αt x0 α t = 1 − β t \alpha_t=1-\beta_t αt=1βt α t ‾ = α t α t − 1 . . . α 2 α 1 \overline{\alpha_t}=\alpha_t\alpha_{t-1}...\alpha_2\alpha_1 αt=αtαt1...α2α1

由上式可知, β t \beta_t βt是常数,则 α t \alpha_t αt 1 − α t ‾ \sqrt{1-\overline{\alpha_t}} 1αt α t ‾ \sqrt{\overline{\alpha_t}} αt 也是常数, ϵ \epsilon ϵ也是已知的,所以可以直接由 x 0 x_0 x0生成 x t x_t xt

def perturb_x(self, x, t, noise):
    return (extract(self.sqrt_alphas_cumprod, t, x.shape) * x +
            extract(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * noise)
def extract(a, t, x_shape):
    b, *_ = t.shape
    out = a.gather(-1, t)
    return out.reshape(b, *((1,) * (len(x_shape) - 1)))

2.2 加噪过程的公式推导

加噪过程:

在这里插入图片描述

加噪过程的公式:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

总结:

在这里插入图片描述

3、去噪过程

去噪是加噪的逆过程,由时间T时刻的图像逐渐去噪到时刻为0的图像,
下面介绍一下由时刻为T的图像 x T x_T xT去噪到时刻为T-1的图像 x T − 1 x_{T-1} xT1,输入为时刻为t的图像 x t x_t xt和时刻t,喂给Unet网络生成 ϵ θ \epsilon_\theta ϵθ,其中 θ \theta θ是Unet网络的所有参数,然后由下图中的 x t − 1 {\bf x}_{t-1} xt1的公式即可生成时刻为t-1的图像 x t − 1 {\bf x}_{t-1} xt1

在这里插入图片描述

3.1 图像概率分布

去噪过程的2个假设:
(1)加噪过程看作马尔可夫链,假设去噪过程也是马尔可夫链,
(2)假设去噪过程是高斯分布,

在这里插入图片描述

假设数据集中有100张图片,每张图片的shape是4x4x3,假设每张图片的每个channel的每个像素点都服从正态分布, x t − 1 x_{t-1} xt1的正态分布的均值 μ \mu μ 和方差 σ 2 \sigma^2 σ2 只和 x t x_t xt有关,已知在t时刻的图像,求t-1时刻的图像,

在这里插入图片描述

1、因为均值和方差 μ ( x t ) \mu(x_t) μ(xt) σ 2 ( x t ) \sigma^2(x_t) σ2(xt) 无法求出,所以我们决定让网络来帮我们预测均值和方差,
2、因为每一个像素都有自己的分布,都要预测出一个均值和方差,所以网络输出的尺寸需要和图像尺寸一致,所以我们选用 Unet 网络,
3、作者在论文中表示,方差并不会影响结果,所以网络只要预测均值就可以了,

4、损失函数

在这里插入图片描述
我们要求极大似然的最大值,需要对 μ \mu μ σ \sigma σ求导,但是对于扩散的过程是不可行的,如下面的公式无法求出,因为 x 1 : x T x_1:x_T x1:xT的不同组合所求出的 x 0 x_0 x0的值也不同,
p ( x 0 ) = ∫ x 1 : x T p ( x 0 ∣ x 1 : x T ) d x 1 : x T p(x_0)=\int_{x_1:x_T}p(x_0|x_1:x_T)d_{x_1:x_T} p(x0)=x1:xTp(x0x1:xT)dx1:xT

为了实现对极大似然函数的求导,把对极大似然求导的问题转换为ELBO :Evidence Lower Bound

在这里插入图片描述

对ELBO的公式继续进行化简,

在这里插入图片描述
在这里插入图片描述
首先来看 q ( x t − 1 ∣ x t , x 0 ) q(x_{t-1}|x_t,x_0) q(xt1xt,x0)表示已知 x 0 x_0 x0 x t x_t xt的情况下推导 x t − 1 x_{t-1} xt1,这个公式是可以求解的,如上图公式推导; p θ ( x t − 1 ∣ x t ) p_{\theta}(x_{t-1}|x_t) pθ(xt1xt)需要使用 Unet 预测出该分布的均值,

q ( x t − 1 ∣ x t , x 0 ) q(x_{t-1}|x_t,x_0) q(xt1xt,x0)公式的推导如下:

在这里插入图片描述
在这里插入图片描述

综上可知,UNet是在预测下面的公式,下面的公式中除了 ϵ \epsilon ϵ之外都是已知量,所以UNet网络实际预测的就是 ϵ \epsilon ϵ
在这里插入图片描述

5、 伪代码过程

下图是训练阶段的伪代码,第1行和第6行表示第2行到第5行的代码一直在循环,
第2行:从数据集中筛选出一张图像,即为 x 0 \bf{x}_0 x0,
第3行:从0到 T T T的均匀分布中筛选出 t t t,源码中 T T T的范围设为1000,
第4行:从均值为0,方差为1的标准正态分布中采样出 ϵ \epsilon ϵ ϵ \epsilon ϵ的size和 x 0 \bf{x}_0 x0的size是相同的,
第5行: x t x_t xt和从0到 T T T的均匀分布中筛选出 t t t喂给Unet,输出 ϵ θ \epsilon_\theta ϵθ,和第4行代码采样出的 ϵ \epsilon ϵ ∣ ∣ ϵ − ϵ θ ( . . . ) ∣ ∣ 2 ||\epsilon-\epsilon_\theta(...)||^2 ∣∣ϵϵθ(...)2的均方差作为损失函数,对这个损失函数求梯度进行参数更新,参数是Unet所有参数的集合 θ \theta θ

在这里插入图片描述

下图是推导/采样/生成图片阶段的伪代码,

第1行:从随机分布中采样一个 x T {\bf x}_T xT
第2行:遍历从 T T T到1,
第3行:从随机分布中采样一个 z \bf{z} z
第4行:已知 z \bf{z} z α t \alpha_t αt σ t \sigma_t σt ϵ θ \epsilon_\theta ϵθ是Unet网络生成的,就可以得到 x t − 1 {\bf x}_{t-1} xt1
循环2-4行代码,

在这里插入图片描述


在这里插入图片描述

参考:
1、CSDN链接:链接
2、哔哩视频:https://www.bilibili.com/video/BV1ju4y1x7L4/?p=5&spm_id_from=pageDriver
3、论文Denoising Diffusion Probabilistic Models:https://arxiv.org/pdf/2006.11239.pdf

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1568978.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【C语言】【Leetcode】【递归】22. 括号生成

文章目录 题目思路代码实现 题目 链接: https://leetcode.cn/problems/generate-parentheses/description/ 思路 我们可以通过回溯递归算法求解 如果左括号数量不大于n&#xff0c;我们可以放一个左括号。 如果右括号数量小于左括号的数量&#xff0c;我们可以放一个右括号…

sky06笔记下

1.边沿检测 检测输入信号din的上升沿&#xff0c;并输出pulse module edge_check ( clk, rstn, din, pulse ); input wire clk,rstn; input wire din; output reg pulse;wire din_dly;always (posedge clk or negedge rstn)beginif(!rstn)din_dly < 1b0;elsedin_dly < d…

Rust egui(4) 增加自己的tab页面

如下图&#xff0c;增加一个Sins也面&#xff0c;里面添加一个配置组为Sin Paraemters&#xff0c;里面包含一个nums的参数&#xff0c;范围是1-1024&#xff0c;根据nums的数量&#xff0c;在Panel中画sin函数的line。 demo见&#xff1a;https://crazyskady.github.io/index.…

b站评论词频统计绘制词云图

一、评论爬取 在笔者之前的文章中&#xff0c;已经专门介绍了b站评论的爬取&#xff08;传送门&#xff09;&#xff0c;这里只对b站评论的文本数据做展示。如下图所示&#xff1a; 二、分词、去停用词、词频统计 Python中的Jieba分词作为应用广泛的分词工具之一&#xff0c;其…

51单片机实验01-点亮LED小灯

目录 一&#xff0c;软件下载 二&#xff0c;单片机概述 1&#xff0c;单片机内部资源 1&#xff09;flash 2&#xff09;ram 3&#xff09;sfr 2&#xff0c;51单片机 3&#xff0c;单片机最小系统 三&#xff0c;点亮最右边的小灯 1&#xff0c;指出满足小灯点亮的有…

关节驱动器 CANFD 通信协议

前言 睿尔曼关节采用了问答方式进行通信&#xff0c;控制器发出指令包&#xff0c;模块返回应答包。一个CAN 总线网络中允许有多个模块&#xff0c;所以每个模块都分配有一个 ID 号。控制器发出的控制指令中包含 ID 信息&#xff0c;只有匹配上 ID 号的模块才能完整接收这条指令…

数学知识--(质数,约数)

本文用于个人算法竞赛学习&#xff0c;仅供参考 目录 一.质数的判定 二.分解质因数 三.质数筛 1.朴素筛法 2.埃氏筛法 3.线性筛法 四.约数 1.求一个数的所有约数 2.约数个数和约数之和 3.欧几里得算法&#xff08;辗转相除法&#xff09;-- 求最大公约数 一.质数的判定 …

MVCC详细总结

简介 MVCC&#xff08;Multi-Version Concurrency Control&#xff09;是一种多版本并发控制机制&#xff0c;主要用于数据库管理系统中&#xff0c;实现对数据库的并发访问。在编程语言中&#xff0c;MVCC可以实现事务内存。 MVCC的特点是读不加锁&#xff0c;读写不冲突。MVC…

Python 一步一步教你用pyglet制作“彩色方块连连看”游戏(续)

“彩色方块连连看”游戏(续) 上期讲到相同的色块连接&#xff0c;链接见&#xff1a; Python 一步一步教你用pyglet制作“彩色方块连连看”游戏-CSDN博客 第八步 续上期&#xff0c;接下来要实现相邻方块的连线&#xff1a; 首先来进一步扩展 行列的类&#xff1a; class R…

STM32 can通信部分函数注释

-----CAN1_Mode_Init CAN模式初始化函数:u8 CAN1_Mode_Init(u8 tsjw,u8 tbs2,u8 tbs1,u16 brp,u8 mode) //CAN初始化 //tsjw:重新同步跳跃时间单元.范围:CAN_SJW_1tq~ CAN_SJW_4tq //tbs2:时间段2的时间单元. 范围:CAN_BS2_1tq~CAN_BS2_8tq; //tbs1:时间段1的时间单元. 范…

day63 单调栈part02

503. 下一个更大元素 II 中等 给定一个循环数组 nums &#xff08; nums[nums.length - 1] 的下一个元素是 nums[0] &#xff09;&#xff0c;返回 nums 中每个元素的 下一个更大元素 。 数字 x 的 下一个更大的元素 是按数组遍历顺序&#xff0c;这个数字之后的第一个比它更…

vue快速入门(六)v-else和v-else-if

注释很详细&#xff0c;直接上代码 上一篇 新增内容 v-else-if用法v-else用法 源码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-s…

docker部署nacos,单例模式(standalone),使用内置的derby数据库,简易安装

文章目录 前言安装创建文件夹docker指令安装docker指令安装-瘦身版 制作docker-compose.yaml文件查看页面 前言 nacos作为主流的服务发现中心和配置中心&#xff0c;广泛应用于springcloud框架中&#xff0c;现在就让我们一起简易的部署一个单例模式的nacos&#xff0c;版本可…

算法学习系列(四十六):迭代加深、双向DFS

目录 引言概念一、加成序列二、送礼物 引言 本文主要讲了&#xff0c; D F S DFS DFS 的另外两种优化&#xff0c;分别是迭代加深和双向 D F S DFS DFS &#xff0c;思路还是非常清晰明了的&#xff0c;只要会写 D F S DFS DFS 那么这些剪枝和优化其实还是非常的容易的&…

Vue监听器watch的基本用法

文章目录 1. 作用2. 格式3. 示例3.1 value 值为字符串3.2 value 值为函数3.3 value 值为对象 4. 与计算属性对比 1. 作用 监视数据变化&#xff0c;执行一些业务逻辑或异步操作。 2. 格式 监听器 watch 内部以 key &#xff1a;value 的形式定义&#xff0c;key 是 data 中的…

用html写一个爱心

<!DOCTYPE html> <html lang"zh-CN"><head><meta http-equiv"Content-Type" content"text/html; charsetUTF-8" /><title>爱您</title><style>* {padding: 0;margin: 0;}body {background-color: pin…

C语言笔试题之求解X的平方根

求解X的平方根 一、实例要求 1、给定一个非负整数 x &#xff0c;计算并返回 x 的算术平方根 &#xff1b;2、由于返回类型是整数&#xff0c;结果只保留整数部分 &#xff0c;小数部分将被舍去&#xff1b;3、不允许使用任何内置指数函数、运算符&#xff1b; 二、实例分析…

图DP

目录 有向无环图DP 力扣 329. 矩阵中的最长递增路径 力扣 2192. 有向无环图中一个节点的所有祖先 有向有环图DP 力扣 1306. 跳跃游戏 III 有向无环图DP 力扣 329. 矩阵中的最长递增路径 给定一个 m x n 整数矩阵 matrix &#xff0c;找出其中 最长递增路径 的长度。 对…

C语言:文件操作(二)

目录 前言 4、文件的顺序读写 4.1fputc 4.2 fgetc 4.3 fputs 4.4 fgets 4.5 fprintf 4.6 fscanf 4.7 fread和fwrite 结&#xff08;二&#xff09; 前言 接者“C语言&#xff1a;文件操作&#xff08;一&#xff09;”往下讲。 本篇文章将介绍C语言的文件操作&#xf…

【数字图像处理matlab系列】空间域处理之亮度变换(imadjust函数使用)

【数字图像处理matlab系列】空间域处理之亮度变换(imadjust函数使用) 在空间域中&#xff0c;图像处理就是直接对图像的像素进行操作 imadjust 是 MATLAB 中用于调整图像强度值或颜色图的函数。它可以改变图像的对比度&#xff0c;使得图像更清晰或更易于分析。以下是 imadju…