Theory for the information-based decomposition of stock price

news2025/1/15 16:49:56

文章目录

    • Motivation
    • The potential of Brogaard Decomposition
    • Intuitions for Brogaard decomposition
    • Technique details in Brogaard decomposition
      • Define the VAR system
      • Identify the VAR system
      • Variance decomposition
    • Summary
    • Main References

Motivation

Brogaard et al. (2022, RFS) proposed a new variance decomposition method (hereafter I call it Brogaard decomposition) for stock price volatility, which might be a powerful tool for both accounting and market micro-structure scholars to evaluate the impacts of informatinonal shocks on stock price informativeness. In this blog, I will introduce the potential and intuition of Brogaard decomposition, as well as the theory techniques embedded in this decomposition method.

The potential of Brogaard Decomposition

The method of Brogaard Decomposition provides a novel way to distinguish the roles of different types of information (e.g., market-wide information, firm-specific private information, firm-specific public information) and noise in stock price movements. This could be relevant for both accounting scholars, who focus on the micro firm-specific movements, and market micro-structure scholars, who have apparent interests in analyzing how do different informational arrangements in the market affect the price informativeness. Beyond that, one can aggregate the model outputs both in cross section and in time series, cultivating more macro insights on how does the overall market efficiency evolve over time.

Actually, Brogaard et al. (2022, RFS) has illustrated its potential through various tests. For example, by analyzing the time trend of the noise proportion in stock return variance, they show that market efficiency is dynamic, and is heavily influenced by the environment/market structure. Specifically, they find that the proportion of noise part in stock return movement is significantly responsive to a list of material changes in market microstructure like such as the exogenous decreases in tick size. Similarly, the proportion of firm-specific information part significantly increased after the implementation of Regulation Fair Disclosure (2000) and Sarbanes-Oxley Act (2022), both having increased the quality and quantity of corporate disclosure.

Moreover, as a powerful response to the recent concern that the prevalence of high-frequency trading and passive investment may dampen the degree of which firms’ prices reflect their idiosyncratic information (e.g., Baldauf and Mollner, 2020; Lee, 2020), Brogaard et al. (2022, RFS) show that the proportion of firm-specific information accounts in stock volatility didn’t see a significant decay in the last decade, when the concerning high-frequency trading as well as passive investment became prevalent.

Last but not least, as the price variance decomposition in Brogaard et al. (2022, RFS) is actually conducted in firm level, this method could also empower both the cross-sectional and time-series comparasion among different firms, which is particularly an important feature for accounting scholars. For example, Brogaard et al. (2022, RFS) show that while there is an on average increase in price changes attributed to firm-specific shocks since 2000s, such price improvement is mainly driven by large firms.


Figure 1: Trend of Various Information Parts in Stock Volatility

Intuitions for Brogaard decomposition

Following the spirit of Beveridge and Nelson (1991), Brogaard et al. (2022, RFS) perceive that an informational shock should cause the stock price to adjust both permanently and transiently. For example, a sudden burst of unexpected buying of a stock, which is perceived as a shock to firm-specific private information by Brogaard et al. (2022, RFS), typically causes the stock price to temporarily overreact and then subsequently revert to a new equilibrium level through time. Suppose it takes 10 period for the stock price to adjust to a new equilibrium price, then the difference between the 10-step-forward price and the price just before the informational shock arrives should be the permanent price adjustment attributed to the informational shock. Correspondingly, the difference between the temporary price and the new equilibrium price is the transient noise part. Brogaard et al. (2022, RFS) showed that such intuition also applies to price underreaction, arrivals of concurrent informational shocks, as well as dynamically arrived informational shocks.


Figure 2: Intuition for Brogaard Decomposition (Overreaction)

Having established the idea to identify the impact of informational shocks on stock price adjustment, Brogaard et al. (2022, RFS) partitioned the information impounded into stock prices into three sources, and anything left over is called pricing error and is attributed to noises.

  • market-wide information, with the corresponding innovation term ε r m , t \varepsilon_{r_m, t} εrm,t- private firm-specific information incorporated through trading, with the corresponding innovation term ε x , t \varepsilon_{x, t} εx,t- and public firm-specific information such as firm-specific news disseminated in company announcements and by the media, with the corresponding innovation term ε r , t \varepsilon_{r, t} εr,t
    By doing this, Brogaard et al. (2022, RFS) decompose the stock returns into four parts

where θ r m ε r m , t \theta_{r_m} \varepsilon_{r_m, t} θrmεrm,t captures the market-wide information incorporated into stock prices, θ x ε x , t \theta_x \varepsilon_{x, t} θxεx,t captures the firm-specific private information revealed through submitted orders, and θ r ε r , t \theta_r \varepsilon_{r, t} θrεr,t is the remaining part of firm-specific information that is not captured by trading on private information. Δ s t \Delta s_t Δst represents changes in the pricing errors.


Figure 3: Decision Tree of Brogaard Decomposition

Correspondingly, the variance of the realized stock returns σ r 2 \sigma_r^2 σr2 is composed of the following four parts:
 MktInfo  = θ r m 2 σ ε r m 2  PrivateInfo  = θ x 2 σ ε x 2  PublicInfo  = θ r 2 σ ε r 2  Noise  = σ s 2 . \begin{aligned} \text { MktInfo } &=\theta_{r_m}^2 \sigma_{\varepsilon_{r_m}}^2 \\ \text { PrivateInfo } &=\theta_x^2 \sigma_{\varepsilon_x}^2 \\ \text { PublicInfo } &=\theta_r^2 \sigma_{\varepsilon_r}^2 \\ \text { Noise } &=\sigma_s^2 . \end{aligned}\notag  MktInfo  PrivateInfo  PublicInfo  Noise =θrm2σεrm2=θx2σεx2=θr2σεr2=σs2.Normalizing these variance components to sum to 100% gives variance shares:
 MktInfoShare  = θ r m 2 σ ε r m 2 / ( σ w 2 + σ r 2 )  PrivateInfoShare  = θ x 2 σ ε x 2 / ( σ w 2 + σ r 2 )  PublicInfoShare  = θ r 2 σ ε r 2 / ( σ w 2 + σ r 2 )  NoiseShare  = σ s 2 / ( σ w 2 + σ r 2 ) . \begin{aligned} \text { MktInfoShare } &=\theta_{r_m}^2 \sigma_{\varepsilon_{r_m}}^2 /(\sigma_w^2+\sigma_r^2 )\\ \text { PrivateInfoShare } &=\theta_{x}^2 \sigma_{\varepsilon_x}^2 /(\sigma_w^2+\sigma_r^2 ) \\ \text { PublicInfoShare } &=\theta_r^2 \sigma_{\varepsilon_r}^2 /(\sigma_w^2+\sigma_r^2 ) \\ \text { NoiseShare } &=\sigma_s^2 /(\sigma_w^2+\sigma_r^2 ) . \end{aligned} \notag  MktInfoShare  PrivateInfoShare  PublicInfoShare  NoiseShare =θrm2σεrm2/(σw2+σr2)=θx2σεx2/(σw2+σr2)=θr2σεr2/(σw2+σr2)=σs2/(σw2+σr2).where the variance of the realized stock returns σ r 2 \sigma_r^2 σr2 is the combination of the variance induced by informational shocks σ w 2 \sigma_w^2 σw2 and the variance attributed by noises σ s 2 \sigma_s^2 σs2.
σ r 2 = σ w 2 + σ s 2 \sigma_r^2 = \sigma_w^2+\sigma_s^2 \notag σr2=σw2+σs2

Technique details in Brogaard decomposition

Define the VAR system

The system in Brogaard et al. (2022, RFS) is defined by a structural VAR with 3 variables and 5 lags

r m , t = ∑ l = 1 5 a 1 , l r m , t − l + ∑ l = 1 5 a 2 , l x t − l + ∑ l = 1 5 a 3 , l r t − l + ε r m , t r_{m, t} =\sum_{l=1}^5 a_{1, l} r_{m, t-l}+\sum_{l=1}^5 a_{2, l} x_{t-l}+\sum_{l=1}^5 a_{3, l} r_{t-l}+\varepsilon_{r_m, t} rm,t=l=15a1,lrm,tl+l=15a2,lxtl+l=15a3,lrtl+εrm,t
x t = ∑ l = 0 5 b 1 , l r m , t − l + ∑ l = 1 5 b 2 , l x t − l + ∑ l = 1 5 b 3 , l r t − l + ε x , t x_t =\sum_{l=0}^5 b_{1, l} r_{m, t-l}+\sum_{l=1}^5 b_{2, l} x_{t-l}+\sum_{l=1}^5 b_{3, l} r_{t-l}+\varepsilon_{x, t} xt=l=05b1,lrm,tl+l=15b2,lxtl+l=15b3,lrtl+εx,t
r t = ∑ l = 0 5 c 1 , l r m , t − l + ∑ l = 0 5 c 2 , l x t − l + ∑ l = 1 5 c 3 , l r t − l + ε r , t (B1) r_t =\sum_{l=0}^5 c_{1, l} r_{m, t-l}+\sum_{l=0}^5 c_{2, l} x_{t-l}+\sum_{l=1}^5 c_{3, l} r_{t-l}+\varepsilon_{r, t}\tag{B1} rt=l=05c1,lrm,tl+l=05c2,lxtl+l=15c3,lrtl+εr,t(B1)
where

  • r m , t r_{m,t} rm,t is the market return, the corresponding innovation ε r m , t \varepsilon_{r_{m,t}} εrm,t represents innovations in market-wide information
  • x t x_t xt is the signed dollar volume of trading in the given stock, the corresponding innovation ε x , t \varepsilon_{x,t} εx,t represents innovations in firm-specific private information
  • r t r_t rt is the stock return, the corresponding innovation ε r , t \varepsilon_{r,t} εr,t represents innovations in firm-specific public information
  • the authors assume that ε r m , t , ε x , t , ε r , t \\{\varepsilon_{r_m, t}, \varepsilon_{x, t}, \varepsilon_{r, t}\\} εrm,t,εx,t,εr,t are contemporaneously uncorrelated

Identify the VAR system

  • first estimate the reduced-form version of the VAR model

r m , t = a 0 ∗ + ∑ l = 1 5 a 1 , l ∗ r m , t − l + ∑ l = 1 5 a 2 , l ∗ x t − l + ∑ l = 1 5 a 3 , l ∗ r t − l + e r m , t x t = b 0 ∗ + ∑ l = 1 5 b 1 , l ∗ r m , t − l + ∑ l = 1 5 b 2 , l ∗ x t − l + ∑ l = 1 5 b 3 , l ∗ r t − l + e x , t r t = c 0 ∗ + ∑ l = 1 5 c 1 , l ∗ r m , t − l + ∑ l = 1 5 c 2 , l ∗ x t − l + ∑ l = 1 5 c 3 , l ∗ r t − l + e r , t (B2) \begin{aligned} &r_{m, t}=a_0^*+\sum_{l=1}^5 a_{1, l}^* r_{m, t-l}+\sum_{l=1}^5 a_{2, l}^* x_{t-l}+\sum_{l=1}^5 a_{3, l}^* r_{t-l}+e_{r_m, t} \\ &x_t=b_0^*+\sum_{l=1}^5 b_{1, l}^* r_{m, t-l}+\sum_{l=1}^5 b_{2, l}^* x_{t-l}+\sum_{l=1}^5 b_{3, l}^* r_{t-l}+e_{x, t} \\ &r_t=c_0^*+\sum_{l=1}^5 c_{1, l}^* r_{m, t-l}+\sum_{l=1}^5 c_{2, l}^* x_{t-l}+\sum_{l=1}^5 c_{3, l}^* r_{t-l}+e_{r, t} \end{aligned} \tag{B2} rm,t=a0+l=15a1,lrm,tl+l=15a2,lxtl+l=15a3,lrtl+erm,txt=b0+l=15b1,lrm,tl+l=15b2,lxtl+l=15b3,lrtl+ex,trt=c0+l=15c1,lrm,tl+l=15c2,lxtl+l=15c3,lrtl+er,t(B2)

  • impose Cholesky decomposition, forcing all elements above the principal diagonal of B − 1 B^{-1} B1 to be 0 so that the system can be exactly identified

    [ e r m , t e x , t e r , t ] = [ 1 0 0 b 1 , 0 1 0 b 2 , 0 b 2 , 1 1 ] [ ε r m , t ε x , t ε r , t ] (B3) \left[\begin{array}{l} e_{r_m, t} \\ e_{x, t} \\ e_{r, t} \end{array}\right]=\left[\begin{array}{lll} 1 & 0 & 0 \\ b_{1,0} & 1 & 0 \\ b_{2,0} & b_{2,1} & 1 \end{array}\right]\left[\begin{array}{l} \varepsilon_{r_m, t} \\ \varepsilon_{x, t} \\ \varepsilon_{r, t} \end{array}\right]\tag{B3} erm,tex,ter,t = 1b1,0b2,001b2,1001 εrm,tεx,tεr,t (B3)

  • these imposed restrictions imply

    • the market return r m r_m rm is not contemporaneously affected by innovations in individual returns ε r , t \varepsilon_{r,t} εr,t or individual order imbalance/trading volume ε x , t \varepsilon_{x,t} εx,t - the individual order imbalance/trading volume is not contemporaneously affected by innovations in individual stock return ε r , t \varepsilon_{r,t} εr,t
  • the equation (B3) implies

    e r m , t = ε r m , t e x , t = ε x , t + b 1 , 0 ε r m , t = ε x , t + b 1 , 0 e r m , t (B4) \begin{gathered} e_{r_m, t}=\varepsilon_{r_m, t} \\ e_{x, t}=\varepsilon_{x, t}+b_{1,0} \varepsilon_{r_m, t}=\varepsilon_{x, t}+b_{1,0} e_{r_m, t} \end{gathered}\tag{B4} erm,t=εrm,tex,t=εx,t+b1,0εrm,t=εx,t+b1,0erm,t(B4)

  • for ease of estimation, to write e r , t e_{r,t} er,t as the function of e r m , t e_{r_m,t} erm,t and e x , t e_{x,t} ex,t
    e r , t = c 1 , 0 e r m , t + c 2 , 0 e x , t + ε r , t (B5) e_{r,t}=c_{1,0} e_{r_m, t}+c_{2,0} e_{x, t}+\varepsilon_{r, t} \tag{B5} er,t=c1,0erm,t+c2,0ex,t+εr,t(B5)

  • plug (B4) into (B5) and get

    e r , t = ε r , t + ( c 1 , 0 + c 2 , 0 b 1 , 0 ) ε r m , t + c 2 , 0 ε x , t (B6) e_{r,t}=\varepsilon_{r, t}+\left(c_{1,0}+c_{2,0} b_{1,0}\right) \varepsilon_{r_m, t}+c_{2,0} \varepsilon_{x, t} \tag{B6} er,t=εr,t+(c1,0+c2,0b1,0)εrm,t+c2,0εx,t(B6)

  • thus

    • regress e x , t e_{x,t} ex,t on e r m , t e_{r_m,t} erm,t, one can get b 1 , 0 b_{1,0} b1,0
    • regress e r , t e_{r,t} er,t on e r m , t e_{r_m,t} erm,t, one can get c 1 , 0 c_{1,0} c1,0
    • regress e r , t e_{r,t} er,t on e x , t e_{x,t} ex,t, one can get c 2 , 0 c_{2,0} c2,0
    • note that e x , t e_{x,t} ex,t, e r , t e_{r,t} er,t, e r , t e_{r,t} er,t are residuls estimated from the reduced-form VAR system (B2)
  • with the estimated parameters b 1 , 0 , c 1 , 0 , c 2 , 0 b_{1,0}, c_{1,0},c_{2,0} b1,0,c1,0,c2,0 and the estimated variances of the reduced-form residuals ( σ e r m 2 , σ e x 2 ,  and  σ e r 2 ) \left(\sigma_{e_{r_m}}^2, \sigma_{e_x}^2, \text { and } \sigma_{e_r}^2\right) (σerm2,σex2, and σer2), one can obtain the variances of the innovation terms based on equation (B4) and (B6)

    σ ε r m 2 = σ e r m 2 σ ε x 2 = σ e x 2 − b 1 , 0 2 σ e r m 2 σ ε r 2 = σ e r 2 − ( c 1 , 0 2 + 2 c 1 , 0 c 2 , 0 b 1 , 0 ) σ e r m 2 − c 2 , 0 2 σ e x 2 . (B7) \begin{aligned}\sigma_{\varepsilon_{r_m}}^2 &=\sigma_{e_{r_m}}^2 \\ \sigma_{\varepsilon_x}^2 &=\sigma_{e_x}^2-b_{1,0}^2 \sigma_{e_{r_m}}^2 \\ \sigma_{\varepsilon_r}^2 &=\sigma_{e_r}^2-\left(c_{1,0}^2+2 c_{1,0} c_{2,0} b_{1,0}\right) \sigma_{e_{r_m}}^2-c_{2,0}^2 \sigma_{e_x}^2 .\end{aligned} \tag{B7} σεrm2σεx2σεr2=σerm2=σex2b1,02σerm2=σer2(c1,02+2c1,0c2,0b1,0)σerm2c2,02σex2.(B7)
    where

    σ ε r 2 = σ e r 2 − ( c 1 , 0 + c 2 , 0 b 1 , 0 ) 2 σ e r m 2 − c 2 , 0 2 ( σ e x 2 − b 1 , 0 2 σ e r m 2 ) \sigma_{\varepsilon_r}^2=\sigma_{e_r}^2-\left(c_{1,0}+c_{2,0} b_{1,0}\right)^2\sigma_{e_{r_m}}^2-c_{2,0}^2(\sigma_{e_x}^2-b_{1,0}^2 \sigma_{e_{r_m}}^2) σεr2=σer2(c1,0+c2,0b1,0)2σerm2c2,02(σex2b1,02σerm2)

  • the impulse response can be generically conducted with the exactly identified VAR system

Variance decomposition

  • the cumulative return response to each of the innovations ε r m , t , ε x , t , ε r , t \varepsilon_{r_m, t}, \varepsilon_{x, t}, \varepsilon_{r, t} εrm,t,εx,t,εr,t at t t t =15 (point at which the authors believe the responses are generally stable) gives estimates of θ r m , θ x , θ r \theta_{r_m}, \theta_x, \theta_r θrm,θx,θr respectively

  • in particular, the 15-step-ahead forecast error for stock return is

    r t + 15 − E t r t + 15 = ϕ 31 ( 0 ) ε r m t + 15 + ϕ 31 ( 1 ) ε r m t + 15 − 1 + ⋯ + ϕ 31 ( 14 ) ε r m t + 1 + ϕ 32 ( 0 ) ε x t + 15 + ϕ 32 ( 1 ) ε x t + 15 − 1 + ⋯ + ϕ 32 ( 14 ) ε x t + 1 + ϕ 33 ( 0 ) ε r t + 15 + ϕ 33 ( 1 ) ε r t + 15 − 1 + ⋯ + ϕ 33 ( 14 ) ε r t + 1 \begin{aligned}r_{t+15}- E_t r_{t+15}&=\phi_{31}(0) \varepsilon_{r_m t+15}+\phi_{31}(1) \varepsilon_{r_m t+15-1}+\cdots+\phi_{31}(14) \varepsilon_{r_m t+1} \\ &+\phi_{32}(0) \varepsilon_{xt+15}+\phi_{32}(1) \varepsilon_{xt+15-1}+\cdots+\phi_{32}(14) \varepsilon_{xt+1} \\ &+\phi_{33}(0) \varepsilon_{rt+15}+\phi_{33}(1) \varepsilon_{rt+15-1}+\cdots+\phi_{33}(14) \varepsilon_{rt+1} \end{aligned} rt+15Etrt+15=ϕ31(0)εrmt+15+ϕ31(1)εrmt+151++ϕ31(14)εrmt+1+ϕ32(0)εxt+15+ϕ32(1)εxt+151++ϕ32(14)εxt+1+ϕ33(0)εrt+15+ϕ33(1)εrt+151++ϕ33(14)εrt+1

  • the 15-step-ahead forecast error variance of r t + 15 r_{t+15} rt+15 should contain

θ r m σ ε r m 2 + θ x σ ε x 2 + θ r σ ε r 2 = σ ε r m 2 [ ϕ 31 ( 0 ) 2 + ϕ 31 ( 1 ) 2 + ⋯ + ϕ 31 ( 14 ) 2 ] + σ ε x 2 [ ϕ 32 ( 0 ) 2 + ϕ 32 ( 1 ) 2 + ⋯ + ϕ 32 ( 14 ) 2 ] + σ ε r 2 [ ϕ 31 ( 0 ) 2 + ϕ 31 ( 1 ) 2 + ⋯ + ϕ 31 ( 14 ) 2 ] \begin{aligned}\theta_{r_m}\sigma_{\varepsilon_{r_m}}^2+\theta_{x}\sigma_{\varepsilon_{x}}^2+\theta_{r}\sigma_{\varepsilon_{r}}^2&=\sigma_{\varepsilon_{r_m}}^2\left[\phi_{31}(0)^2+\phi_{31}(1)^2+\cdots+\phi_{31}(14)^2\right]\\ &+\sigma_{\varepsilon_x}^2\left[\phi_{32}(0)^2+\phi_{32}(1)^2+\cdots+\phi_{32}(14)^2\right]\\ &+\sigma_{\varepsilon_r}^2\left[\phi_{31}(0)^2+\phi_{31}(1)^2+\cdots+\phi_{31}(14)^2\right]\end{aligned} θrmσεrm2+θxσεx2+θrσεr2=σεrm2[ϕ31(0)2+ϕ31(1)2++ϕ31(14)2]+σεx2[ϕ32(0)2+ϕ32(1)2++ϕ32(14)2]+σεr2[ϕ31(0)2+ϕ31(1)2++ϕ31(14)2]

  • anything left in σ r 2 ( 15 ) \sigma_r^2 (15) σr2(15) is attributed to noises

Summary

In this blog, I firstly discussed the potential of the variance decomposition method developed by Brogaard et al. (2022, RFS). Then I illustrate the intuition as well as the theoretical techniques employed by the Brogaard decomposition.

Main References

  1. Baldauf, Markus, and Joshua Mollner. “High‐frequency trading and market performance.” The Journal of Finance 75.3 (2020): 1495-1526.
  2. Bernanke, Ben S. “Alternative explanations of the money-income correlation.” (1986).
  3. Beveridge, Stephen, and Charles R. Nelson. “A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the ‘business cycle’.” Journal of Monetary Economics 7, no. 2 (1981): 151-174.
  4. Blanchard, Olivier J., and Danny Quah. “The Dynamic Effects of Aggregate Demand and Supply Disturbances.” The American Economic Review 79, no. 4 (1989): 655-673.
  5. Enders, Walter. “Applied Econometric Time Series. 2th ed.” New York (US): University of Alabama (2004).
  6. Lee, Jeongmin. “Passive investing and price efficiency.” Available at SSRN 3725248 (2020).
  7. Sims, Christopher A. “Macroeconomics and reality.” Econometrica (1980): 1-48.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/156165.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

1000字带您了解网络设备的接口分类和接口编号规则

通过本文,您可以了解到设备的接口分类和接口编号规则。 文章目录一、接口分类1.1 物理接口1.1.1 管理接口1.1.1 业务接口LAN侧接口WAN侧接口1.2 逻辑接口二、接口编号规则2.1 物理接口编号规则三、总结一、接口分类 接口是设备与网络中的其它设备交换数据并相互作用…

3.3 行列式的几何意义

文章目录二维面积三维体积多维体积行列式是线性代数一个非常重要的内容,也是非常难的领域.行列式在欧几里得空间里还有特殊的几何意义。二维面积 &esmp; 两个向量围成的平行四边形的面积就是这两个向量组成的矩阵的行列式的绝对值。以两个向量(3.−2)T(3.-2)^…

结构体 · 内存对齐

欢迎来到 Claffic 的博客 💞💞💞 前言: 在初识C语言中简单介绍了结构体,结构体可以理解为不同类型数据的集合体,但是你想过结构体的大小是如何计算的吗?看完这篇博客,你就能给自己答…

Linux 计算机网络 route 路由表、多网段与 bond 的故事

Linux 计算机网络 route 路由表、多网段与 bond 的故事 序 在之前的章节中,介绍了计算机网络的发展以及各种解析,在之中我们提到了每个主机设备都会维护一张自己的路由表,通过路由表来确定在不同网络之间,怎么将数据规划传输到各…

1988-2020年31省基尼系数数据

1、时间:1988-2020年 2、范围:31省 3、指标:包括省基尼系数年度数据,省城市和农村基尼系数年度 4、来源及计算方法说明附在文件内 5、指标说明: 基尼系数(英文:Gini index、Gini Coefficie…

LeetCode 94. 二叉树的中序遍历

🌈🌈😄😄 欢迎来到茶色岛独家岛屿,本期将为大家揭晓LeetCode 94. 二叉树的中序遍历,做好准备了么,那么开始吧。 🌲🌲🐴🐴 一、题目名称 LeetC…

Mybatis获取参数

Mybatis获取参数 配置模板 mybatis获取参数值的两种方式 1、&{}: 字符串拼接 2、#{}: 占位符赋值 MyBatis获取参数值的各种情况: MyBatis获取参数值的各种情况: 1、mapper接口方法的参数为单个的字面量类型 可以通过&#xf…

双系统下 linux挂载window磁盘

如果想让linux访问window分区磁盘,呈只读状态,解决办法是bios取消window快速开机。永久挂载windows磁盘 https://blog.csdn.net/yuehenmiss/article/details/124737456 # 创建挂载目录 sudo mkdir /window # 挂载分区 sudo mount /dev/sda1 /window # 查…

产品经理必懂知识之计算机基础知识

作为产品经理,非常有必要了解一下计算机的发展历史,今天带大家一起,大概地了解一下计算机的基础知识,希望能够帮助到大家,框架如下: 一、计算机发展史 1.1计算机的诞生 1946年第一台电子计算机问世美国宾…

YOLOv8训练自己的数据集(超详细)

一、准备深度学习环境 本人的笔记本电脑系统是:Windows10 YOLO系列最新版本的YOLOv8已经发布了,详细介绍可以参考我前面写的博客,目前ultralytics已经发布了部分代码以及说明,可以在github上下载YOLOv8代码,代码文件夹…

一种车辆纵向控制切换算法设计思路

传统及主流的纵向控制切换算法: 例如《某避障控制策略研究》硕士论文: 在CarSim中设定节气门开度及制动踏板力为0,测得不同车速工况下车辆自然滑行的减速度。为了避免在控制过程中车辆驱动与制动切换的过于频繁,在其两侧设置了宽…

VUE_vue-cli 卸载不掉的问题解决

nodejs版本最好在v17以下,推荐使用v16.19.0 问题 由于项目需要旧版的 vue-cli ,所以需要事先卸载新版本; 运行命令全局卸载: yarn global remove vue/cli// 查看当前版本确定是否卸载 vue --version结果还是旧版本,…

使用ResNet34实现CIFAR100数据集的训练

如果对你有用的话,希望能够点赞支持一下,这样我就能有更多的动力更新更多的学习笔记了。😄😄 使用ResNet进行CIFAR-10数据集进行测试,这里使用的是将CIFAR-10数据集的分辨率扩大到32X32,因为算力相关的…

5.8.1、TCP的连接建立

TCP 是面向连接的协议,它基于运输连接来传送 TCP 报文段。 TCP 运输连接的建立和释放是每一次面向连接的通信中必不可少的过程。 TCP 运输连接有以下三个阶段 建立 TCP 连接:通过 “三报文握手” 建立 TCP 连接数据传送:也就是基于已建立的…

【PostgreSQL】手把手教学PostgreSQL

目录 1、PostgreSQL介绍 2、在ubuntu上通过命令安装 3、进入postgres用户 4、查看所有数据库 5、创建数据库 6、删除数据库 7、查看版本号(注意:在sudo su - postgres下) 8、远程连接 1、PostgreSQL介绍 官网:PostgreSQL: T…

SiC碳化硅功率器件测试哪些方面?碳化硅功率器件测试系统NSAT-2000

SiC碳化硅功率半导体器件具有耐压高、热稳定好、开关损耗低、功率密度高等特点,被广泛应用在电动汽车、风能发电、光伏发电等新能源领域。 近年来,全球半导体功率器件的制造环节以较快速度向我国转移。目前,我国已经成为全球最重要的半导体功率器件封测基…

wndows平台VS2019+OpenCV+cmake简单应用

wndows平台VS2019OpenCVcmake简单应用1.下载并解压文件2.结合人脸检测demo在vs中进行配置2.1 人脸检测代码2.2 在VS项目—属性中配置2.2.1 配置包含目录2.2.2 配置库目录2.2.3 配置链接器附加依赖项2.3 通过cmake进行配置与编译2.3.1 添加CMakeLists.txt文件2.3.2 cmake命令行执…

普中学习板准备工作

目录 1.1 ch341驱动安装 1. 目标板上的usb-串口模块插上 2. 按下目标板上的上电按钮 3. 打开ch341驱动程序,点击安装,等待结果 1.2 使用自动下载软件 1. 使用普中的自动下载软件 2. 串口号处选择安装好的驱动端口 3. 打开文件选择编译好的程序 …

2023 RealWorldCTF “Ferris proxy”逆向题分析(不算wp)

这题第二天才开始做,结果到比赛后4个小时才做出来,真是老了,不过也算有收获,对rust的程序更熟悉了~ client编译后的代码有41M,WTF 主函数入口 根据main函数找到两个入口 第二个函数很明显是主入口,不过…

数字图像相关系列笔记:DuoDIC

文章目录概述Algorithms and workflowStep 1: Stereo camera calibrationStep 2: Image cross-correlation (2D-DIC)Step 3: 3D reconstructionStep 4: Post processingValidation using a rigid body motion (RBM) testLimitations遗留问题参考资料附录概述 3D-DIC is a non-…