红黑树介绍及插入操作的实现

news2025/1/12 4:02:44

🎉个人名片:

🐼作者简介:一名乐于分享在学习道路上收获的大二在校生
🙈个人主页🎉:GOTXX
🐼个人WeChat:ILXOXVJE
🐼本文由GOTXX原创,首发CSDN🎉🎉🎉
🐵系列专栏:零基础学习C语言----- 数据结构的学习之路----C++的学习之路
🐓每日一句:如果没有特别幸运,那就请特别努力!🎉🎉🎉
————————————————

文章目录

  • 1.红黑树的概念
  • 2 红黑树的性质
  • 3 红黑树节点的定义
  • 4.红黑树的插入操作(分类详解)
  • 5.红黑树与AVL树的比较

1.红黑树的概念

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。

在这里插入图片描述

2 红黑树的性质

性质:

  1. 每个结点不是红色就是黑色
  2. 根节点是黑色的
  3. 如果一个节点是红色的,则它的两个孩子结点是黑色的
  4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点
  5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)

思考:为什么满足上面的性质,红黑树就能保证:其最长路径中节点个数不会超过最短路径节点个数的两倍?

首先,要满足黑色节点数目相同,则当只有黑色节点的时候,路径最短,因为红色节点不能连续出现,所以当黑色节点与红色节点交替的时候,路径最长,并且为最短的两倍。

3 红黑树节点的定义

enum color                      //颜色
{
	RED,
	BLACK
};
template<class K, class V>
struct AVLNode
{
	AVLNode<K, V>* _left;
	AVLNode<K, V>* _right;
	AVLNode<K, V>* _parent;
	pair<K, V> _kv;
	color _col;                 //记录节点颜色

	AVLNode(pair<K, V>& kv)      
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _col(RED)           //新节点的颜色默认为红色
	{}
};

新插入节点的颜色为红色的原因?

原因:因为红黑树有一条规则,就是每条路径的黑色节点数目相等,插入前每条路径的黑色数目是相等的,但是如果插入的是黑色节点的话,那么该条路径的黑色节点的数目就多了一个,直接违反规则,所以插入新节点为红色节点;

4.红黑树的插入操作(分类详解)

红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:

  1. 按照二叉搜索的树规则插入新节点
  2. 检测新节点插入后,红黑树的性质是否造到破坏
    因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;
    但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:

含义解析:
cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点
在这里插入图片描述
情况一:cur为红色,p为红色,g为黑色,u存在并且为红色

根据上图进行分析:
在这里插入图片描述
解析:
这里p与cur都为红色,违反规则,我们不能直接将p的颜色改为黑色,如果直接改为黑色的话,则每条路径的黑色节点数目就变化了,违反规则。

我们应该将p与u变为红色,g变为黑色,如果g是子树,还需向上调整(比如上图中的下面一种情况),如果g是根节点,则需要变回黑色,因为规则里根节点必须为黑色;

代码实现

    //这里是一个while循环,只展示了循环体里面的代码
	//情况一:uncle存在并且为红色
	if (uncle && uncle->_col == RED)
	{
		uncle->_col = BLACK;
		parent->_col = BLACK;
		grandfather->_col = RED;
		parent = grandfather;          //如果为子树,则继续向上调整
		cur = parent; 
		if (_root == grandfather)      //如果g为根节点,则改回黑色
		{
			grandfather->_col = BLACK;
		}
	}

情况二:u不存在或则u存在并且为黑色
下面的分类与AVL树的旋转的分类很类似;

分析一u不存在/存在且黑色并且p为g的左,c为p的左 或则 p为g的右,c为p的右(p,g,c在一条线上)

当u不存在时:处理方法:单旋+变色
在这里插入图片描述
当u存在时:处理方法:也是单旋+变色
在这里插入图片描述

在这里插入图片描述
总结:

当u存在为黑色或则不存在时,都需要旋转+变色(这里的旋转与上章AVL旋转一样)
如果c为p的左,并且p为g的左,则右旋
如果c为p的右,并且p为g的右,则左旋
变色: 都是p变成黑色,g变为红色

代码实现

//p为g左,c为p左
if (parent==grandfather->_left && cur==parent->_left)
{ 
	rotateR(grandfather);
	parent->_col = BLACK;
	grandfather->_col = RED;
}
//p为g右,c为p右
else if (parent == grandfather->_right && cur == parent->_right)
{
	rotateL(grandfather);
	parent->_col = BLACK;
	grandfather->_col = RED;
}

分析三:u不存在或则存在为黑色,但是p为g的左,c为p的右边 或则 p为g的右,c为p的左(p,g,c不在一条线上)

当u不存在时:处理方法:双旋+变色
在这里插入图片描述
当u存在时:处理方法:双旋+变色
在这里插入图片描述

总结:
当g,p,c不在一条街直线上时,需要双旋+变色处理
旋转方向的判定和AVL树的旋转一样;(上章讲过)

代码实现:

//一左一右
else if(parent == grandfather->_left && cur == parent->_right)
{
	rotateL(parent);
	rotateR(grandfather);
	cur->_col = BLACK;
	parent->_col = BLACK;
	break;
}
else if (parent == grandfather->_right && cur == parent->_left)
{
	rotateR(parent);
	rotateL(grandfather);
	cur->_col = BLACK;
	parent->_col = BLACK;
	break;
}

插入总代码

bool insert(pair<K, V>& kv)
{
	if (_root == nullptr)
	{
		_root = new Node(kv);
		_root->_col = BLACK;
	}
	//找插入点
	Node* parent = nullptr;
	Node* cur = _root;
	while (cur)
	{
		if (cur->_kv > kv)
		{
			parent = cur;
			cur = cur->_left;
		}
		else if (cur->_kv < kv)
		{
			parent = cur;
			cur = cur->_right;
		}
		else
		{
			return false;
		}
	}
	//插入
	if (cur == parent->left)
	{
		cur = new Node(kv);
		parent->_left = cur;
		cur->_parent = parent;
	}
	else if (cur == parent->right)
	{
		cur = new Node(kv);
		parent->_right = cur;
		cur->_parent = parent;
	}

	//调节颜色/调节使其满足规则
	while (parent && parent->_col == RED)
	{
		Node* grandfather = parent->_parent;
		if (parent = grandfather->_left)
		{
			Node* uncle = grandfather->_right;
		}
		else
		{
			Node* uncle = grandfather->_left;
		}
		//情况一:uncle存在并且为红色
		if (uncle && uncle->_col == RED)
		{
			uncle->_col = BLACK;
			parent->_col = BLACK;
			grandfather->_col = RED;
			parent = grandfather;          //如果为子树,则继续向上调整
			cur = parent; 
			if (_root == grandfather)      //如果g为根节点,则改回黑色
			{
				grandfather->_col = BLACK;
			}
		}
		//uncle不存在或则存在为黑色
		else
		{
			//p为g左,c为p左
			if (parent==grandfather->_left && cur==parent->_left)
			{ 
				rotateR(grandfather);
				parent->_col = BLACK;
				grandfather->_col = RED;
				break;
			}
			//p为g右,c为p右
			else if (parent == grandfather->_right && cur == parent->_right)
			{
				rotateL(grandfather);
				parent->_col = BLACK;
				grandfather->_col = RED;
				break;
			}
			//一左一右
			else if(parent == grandfather->_left && cur == parent->_right)
			{
				rotateL(parent);
				rotateR(grandfather);
				cur->_col = BLACK;
				parent->_col = BLACK;
				break;
			}
			else if (parent == grandfather->_right && cur == parent->_left)
			{
				rotateR(parent);
				rotateL(grandfather);
				cur->_col = BLACK;
				parent->_col = BLACK;
				break;
			}
		}
	}
}
//左单旋
void rotateL(Node* parent)
{
	Node* pparent = parent->_parent;     //记录所旋转根节点的父亲
	Node* pNodeR = parent->_right;
	Node* pNodeRL = pNodeR->_left;
	if (pNodeRL)                         //如果该旋转节点的右节点的左孩子存在
		parent->_right = pNodeRL;
	pNodeR->_left = parent;

	//新的父节点的链接
	if (parent == _root)
	{
		_root = pNodeR;
		pparent = nullptr;
	}
	else
	{
		if (pparent->_left == parent)
		{
			pparent->_left = pNodeR;
		}
		else
		{
			pparent->_right = pNodeR;
		}
	}
}
//右单旋
void rotateR(Node* parent)
{
	Node* pparent = parent->_parent;

	Node* pNodeL = parent->_left;
	Node* pNodeLR = pNodeL->_right;

	if (pNodeLR)
		parent->_left = pNodeLR;
	pNodeL->_right = parent;

	if (parent == _root)
	{
		_root = pNodeL;
		pparent = nullptr;
	}
	else
	{
		if (pparent->_left == parent)
		{
			pparent->_left = pNodeL;
		}
		else
		{
			pparent->_right = pNodeL;
		}
	}
}

5.红黑树与AVL树的比较

红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O( l o g 2 N log_2 N log2N),红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1558764.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CubeIDE 下如何将版本号和日期关联。

1. 使用__DATE__ 和__TIME__获取编译日期和时间。 2. 将__DATE__ 和__TIME__转换成UINT 3. 将转换后的数赋值给版本号。 4. 设置工程保证每次都会重新编译对应文件。 对应函数如下&#xff1a; uint8_t VER_MAIN; uint8_t VER_SUB; uint8_t VER_MIN; #include <stdlib.…

原子类 AtomicReference 详解

通过对 AtomicInteger、AtomicBoolean 和 AtomicLong 分析我们发现&#xff0c;这三个原子类只能对单个变量进行原子操作&#xff0c;那么我们如果要对多个变量进行原子操作&#xff0c;这三个类就无法实现了。那如果要进行多个变量进行原子操作呢&#xff1f;操作方式就是&…

node.js的错误处理

当我打开一个不存在的文件时&#xff0c;错误如下&#xff1a; 在读取文件里面写入console.log&#xff08;err&#xff09;&#xff0c;在控制台中可以看到我的错误代码类型&#xff1a;文件不存在的错误代码 ENOENT。见更多错误代码---打开node.js官方API文档Error 错误 | N…

AtCoder Beginner Contest 347 A - E

A - Divisible 大意 给定个数&#xff0c;对于其中能被整除的数&#xff0c;输出商。 思路 直接计算即可。 代码 #include<iostream> using namespace std; int main(){ios::sync_with_stdio(0);cin.tie(0), cout.tie(0);int n, k;cin >> n >> k;while…

IDEA 详细设置

详细设置 如何打开详细配置界面 1、显示工具栏 2、选择详细配置菜单或按钮 系统设置 默认启动项目配置 启动IDEA时&#xff0c;默认自动打开上次开发的项目&#xff1f;还是自己选择&#xff1f; 如果去掉Reopen projects on startup前面的对勾&#xff0c;每次启动IDEA就会…

OSCP靶场--Access

OSCP靶场–Access 考点( 文件上传[黑名单apache.htaccess绕过] Kerberoasting SeManageVolume滥用提权) 1.nmap扫描 ┌──(root㉿kali)-[~/Desktop] └─# nmap 192.168.216.187 -sV -sC -Pn --min-rate 2500 -p- Starting Nmap 7.92 ( https://nmap.org ) at 2024-03-3…

【图轮】【 最小生成树】【 并集查找】1489. 找到最小生成树里的关键边和伪关键边

本文涉及知识点 图轮 最小生成树 并集查找 关键边 1489. 找到最小生成树里的关键边和伪关键边 给你一个 n 个点的带权无向连通图&#xff0c;节点编号为 0 到 n-1 &#xff0c;同时还有一个数组 edges &#xff0c;其中 edges[i] [fromi, toi, weighti] 表示在 fromi 和 to…

【Leetcode】2580. 统计将重叠区间合并成组的方案数

文章目录 题目思路代码复杂度分析时间复杂度空间复杂度 结果总结 题目 题目链接&#x1f517; 给你一个二维整数数组 ranges &#xff0c;其中 ranges[i] [starti, endi] 表示 starti 到 endi 之间&#xff08;包括二者&#xff09;的所有整数都包含在第 i 个区间中。 你需要…

loadbalancer 引入与使用

在消费中pom中引入 <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-loadbalancer</artifactId> </dependency> 请求调用加 LoadBalanced 注解 进行服务调用 默认负载均衡是轮训模式 想要切换…

基于Java+SpringBoot+vue仓库管理系统设计与实现

博主介绍&#xff1a;✌全网粉丝5W&#xff0c;全栈开发工程师&#xff0c;从事多年软件开发&#xff0c;在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战&#xff0c;博主也曾写过优秀论文&#xff0c;查重率极低&#xff0c;在这方面有丰富的经验…

转移指令的原理

文章目录 转移指令的原理1. 操作符offset2. jmp指令3. 依据位移进行转移的jmp指令4. 转移的目的地址在指令中的jmp指令5. 转移地址在寄存器中的jmp指令6. 转移地址在内存中的jmp指令7. jcxz指令8. loop指令9. 根据位移进行转移的意义10. 编译器对转移位移超界的检测 转移指令的…

六种典型的商业间谍软件实例分析

近年来&#xff0c;随着数字化经济的快速发展&#xff0c;这也推动了商业间谍软件数量的急剧增长。目前&#xff0c;商业间谍软件的主要类型包括以下六种。 商业间谍软件是一种软件应用程序/脚本&#xff0c;也被称为“跟踪软件”、“监视软件”&#xff0c;主要功能包括非法数…

Kerberos 认证 javax.security.auth.logon.LoginException:拒绝链接 (Connection refused)

kerberos 服务重启之后异常 项目中用到了hive 和hdfs &#xff0c;权限认证使用了Kerberos&#xff0c;因为机房异常&#xff0c;导致了Kerberos 服务重启&#xff0c;结果发现本来运行正常的应用服务hive 和hdfs 认证失败&#xff0c;报错信息是 典型的网络连接异常 排查思路…

【C语言终章】预处理详解(下)

【C语言终章】预处理详解&#xff08;下&#xff09; 当你看到了这里时&#xff0c;首先要恭喜你&#xff01;因为这里就是C语言的最后一站了&#xff0c;你的编程大能旅途也将从此站开始&#xff0c;为坚持不懈的你鼓个掌吧&#xff01; &#x1f955;个人主页&#xff1a;开敲…

2023年蓝桥杯省赛——蜗牛

目录 题目链接&#xff1a;1.蜗牛 - 蓝桥云课 (lanqiao.cn) 思路 暴力贪心 代码实不了现 动态规划 代码实现 难点解释 总结 题目链接&#xff1a;1.蜗牛 - 蓝桥云课 (lanqiao.cn) 思路 暴力贪心 蓝桥杯反正是能暴力出来一个用例是一个&#xff0c;我真的被折磨了好久&…

10.python的字典dict(上)

10.python的字典dict(上) 什么是字典 在计算机科学中&#xff0c;字典是一种数据结构&#xff0c;用于存储键值对&#xff08;key-value pair&#xff09;的集合。每个键值对都由一个唯一的键和一个对应的值组成。字典能够快速地根据键找到对应的值&#xff0c;因此在很多编程…

探索----------------阿里云

目录 一、阿里云四大件 1、云服务器ECS 2、云数据库RDS 3、负载均衡SLB 4、对象存储OSS 5、其他的云计算产品 1&#xff09;内容分发网络CDN 2&#xff09;专有网络 VPC 二、linux发行版本 三、你平时对系统会怎么优化&#xff08;五大负载&#xff09; 1、cpu 使用率…

有什么好用的网页在线客服系统?选择指南与实用推荐

有什么好用的网页在线客服系统&#xff1f; 企业与客户之间的互动变得越来越重要。为了提高客户满意度和提升企业形象&#xff0c;许多企业开始使用网页在线客服系统。网页在线客服系统是一种实时的、便捷的沟通工具&#xff0c;可以帮助企业与客户建立更紧密的联系。 一、网…

黑马点评项目笔记 II

基于Stream的消息队列 stream是一种数据类型&#xff0c;可以实现一个功能非常完善的消息队列 key&#xff1a;队列名称 nomkstream&#xff1a;如果队列不存在是否自动创建&#xff0c;默认创建 maxlen/minid&#xff1a;设置消息队列的最大消息数量 *|ID 唯一id&#xff1a;…

C++刷题篇——07检测热点字符

一、题目 二、解题思路 1、使用map&#xff0c;key为元素&#xff0c;value为出现的次数 2、由于sort不适用于map&#xff0c;因此要将map的key、value放到vector中&#xff0c;再对vector排序 3、对map排序&#xff1a;方法1&#xff1a;使用二维数组vector<vector<>…