计算机视觉之三维重建(5)---双目立体视觉

news2024/11/26 2:32:56

文章目录

  • 一、平行视图
    • 1.1 示意图
    • 1.2 平行视图的基础矩阵
    • 1.3 平行视图的极几何
    • 1.4 平行视图的三角测量
  • 二、图像校正
  • 三、对应点问题
    • 3.1 相关匹配法
    • 3.2 归一化相关匹配法
    • 3.3 窗口问题
    • 3.4 相关法存在的问题
    • 3.5 约束问题


一、平行视图

1.1 示意图

 如下图即是一个平行视图。特点:(1) 两个平面平行。 (2) 基线平行于图像平面,极点 e e e e ′ e' e 位于无穷远处。

在这里插入图片描述

1.2 平行视图的基础矩阵

 1. 对于基础矩阵我们有另一个表达式: F = e ′ × K ′ R K − 1 F=e'×K'RK^{−1} F=e×KRK1,推导过程如下所示。

在这里插入图片描述

 2. 在平行视图情况下,极点交于无穷远处,所以我们可以假定极点 e ′ = [ 1 , 0 , 0 ] T e'=[1,0,0]^T e=[1,0,0]T,平行视图下, K = K ′ K=K' K=K R = I R=I R=I,那么对于平行视图有:

在这里插入图片描述

1.3 平行视图的极几何

 1. 极线是水平的,平行于 u u u 轴。

 2. 平行视图下, p p p p ′ p' p v v v 轴方向坐标相同,即垂直方向没有变换。

 3. 极点位于无穷远处。

 4. 已知 p p p F F F 的情况下, p ′ p' p 只需要按着扫描线寻找即可,扫描线指的是过 p p p 且平行于 u u u 轴的线。

在这里插入图片描述

在这里插入图片描述

1.4 平行视图的三角测量

 1. 俯视这个平行视图,两个摄像机平面就会变成线。 P P P O 1 O_1 O1 O 2 O_2 O2 的距离表示为深度 z z z O 1 O_1 O1 O 2 O_2 O2 的距离为 B B B,焦距为 f f f。利用相似三角形底比高可得视差与深度 z z z 成反比。

在这里插入图片描述

在这里插入图片描述

 2. (1) 平行视图中的视差图:根据两台平行摄像机在不同角度观察同一物体或场景时,由于视角差异造成的图像的差异进而推断出物体的深度和距离,得到一幅信息图,可以用于对物体或场景的三维重建和识别。 (2) 3D电影通过用两个摄像头同时模拟拍摄同一场景,模拟人眼双眼视觉,再将两个平行视图分别投影到屏幕上,由于使用特殊的偏振式眼睛,通过人眼的立体视觉原理,会给观众感知到一种立体的深度效果。

在这里插入图片描述

在这里插入图片描述

二、图像校正

 1. 图像校正:使一组非平行视图通过校正构建成平行视图。

 2. 图像校正有五步:
 (1) 在两幅图像 l l l l ′ l' l 上找到一组匹配点 p i ↔ p i ′ p_i↔p'_i pipi,不少于 8 8 8 个。

 (2) 计算基础矩阵 F F F(八点法),求解两幅图像中的极点 e e e e ′ e' e
在这里插入图片描述

 (3) 选择透视变换 H ′ H' H e ′ e' e 映射到无穷远点 ( f , 0 , 0 ) (f,0,0) (f,0,0),变换公式: H = T − 1 G R T H=T^{-1}GRT H=T1GRT
 ① 先将图像的中心点从左下角移到中心。② 构造 R R R。③ 构造 G G G

在这里插入图片描述

 (4) 对透视变换矩阵 H H H 进行变换,使得经过 H H H H ′ H' H 变换后的两个像平面满足平行视图要求: Σ d ( H p i , H ′ p i ′ ) Σd(Hp_i,H'p_i') Σd(Hpi,Hpi)

 (5) 分别利用新的矩阵 H H H H ′ H' H,对左右两幅图像 l l l l ′ l' l 进行重采样,得到一组平行视图。

在这里插入图片描述

三、对应点问题

 对应点搜索问题,即根据 p p p 点寻找对应 p ′ p' p 点的问题,我们根据平行视图极几何关系可知, p ′ p' p 点一定在扫描线上,这样可以进一步缩小的检索范围。

3.1 相关匹配法

 通过点与点之间 3 ∗ 3 3*3 33 窗口的相关性来进行判断。作为相关性标准,该方法可行依据在于,一般情况下一个图像上像素颜色或灰度的变化是平滑的,这样近似相同点平方的最大值的和在理论上大于高偏差点平方的最大值的和。

在这里插入图片描述

3.2 归一化相关匹配法

 1. 对于一个图像上存在像素颜色或灰度变化突变的情况,上一种方法会出现计算误差较大,所以需要进行归一化。

 2. 归一化相关匹配法:改变原来的相似性度量,通过每个窗口向窗口均值进行归一化,达到平滑的效果。

在这里插入图片描述

在这里插入图片描述

3.3 窗口问题

 对于较小的窗口:会引入更多的噪声,更容易受到噪声影响,但反之也会在没有噪声影响的地方提供更精确的信息。对于较大的窗口:通过归一化操作可以平滑更多的噪声,但也会丢失一部分细节。

在这里插入图片描述

3.4 相关法存在的问题

 1. 透视缩短和遮挡问题:

在这里插入图片描述

 2. 当遇到不规则物体在视角上存在遮挡时,可能由于 B / z B/z B/z 的过大,两个像平面无法得到更多的信息交互,导致信息丢失,所以可以适当减小 B / z B/z B/z。但当 B / z B/z B/z 过小时,由于双目视觉上遮挡的信息只能尽量的去弱化,不能去消除,所以当 B / z B/z B/z 过小时,物体的突出部会造成过大的深度误差,从而在三维重建过程中存在视觉上的明显错误。

在这里插入图片描述

 3. 同质区域:由于存在世界坐标下不同区域但颜色非常相近的地方,所以会导致误差的产生,比如用双目视觉去测量一堵白墙的形状,但光影极其不明显。

在这里插入图片描述

 4. 对于世界实物上存在重复的区域,这会对双目视觉的三维重建产生较大的影响。

在这里插入图片描述

3.5 约束问题

 1. 唯一性约束:对于一张图像中的任何点,在另一张图像上最多只有一个匹配点,不存在同质区域和重复区域。

在这里插入图片描述

 2. 顺序约束/单调性约束:左右视图中的对应点次序一致,保证不存在遮挡。

在这里插入图片描述

 3. 平滑性约束:视差函数通常是平滑的,减少曝光亮度突变的问题。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1557399.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于Apriori关联规则的电影推荐系统(python实现)

基于Apriori关联规则的电影推荐系统 1、效果图 2、算法原理 Apriori算法是一种用于挖掘关联规则的频繁项集算法,它采用逐层搜索的迭代方法来发现数据库中项集之间的关系并形成规则。 其核心思想是利用Apriori性质来压缩搜索空间,即如果一个项集是非频繁的,那么它的所有父…

结构体类型,结构体变量的创建和初始化 以及结构中存在的内存对齐

一般结构体类型的声明 struct 结构体类型名 { member-list; //成员表列 }variable-list; //变量表列 例如描述⼀个学⽣: struct Stu { char name[20]; //名字 int age; //年龄 char sex[5]; //性别 }; //结构体变量的初始化 int main() { S…

Django详细教程(二) - 部门用户管理案例

文章目录 前言一、新建项目二、新建app三、设计表结构四、新建数据库五、新建静态文件六、部门管理1.部门展示2.部门添加3.部门删除4.部门编辑 七、模板继承八、用户管理1.辨析三种方法方法一:原始方法方法二:Form组件(简便)方法三:ModelForm…

macOS搭建php环境以及调试Symfony

macOS搭建php环境以及调试Symfony macOS搭建php环境以及调试Symfony 古老的传说运行环境快速前置安装环境 php 的安装安装 Xdebug 来调试 php如何找到你的 php.iniXdebug 安装成功 创建并调试的 Hello world 安装 PHP Debug 安装 Symfony 安装 Composer安装 Symfony CLI 创建 …

vue系统——v-html

<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>v-html指令</title> </head> <body&…

微信小程序备案流程详细操作指南

自2023年9月1日起&#xff0c;所有新上架的微信小程序均需事先完成备案手续&#xff0c;方能成功上线。而对于已经上架的存量小程序&#xff0c;也需要在2024年3月31日前完成备案工作。若在规定时间内未完成备案&#xff0c;平台将依据备案相关规定&#xff0c;自2024年4月1日起…

大语言模型---强化学习

本文章参考&#xff0c;原文链接&#xff1a;https://blog.csdn.net/qq_35812205/article/details/133563158 SFT使用交叉熵损失函数&#xff0c;目标是调整参数使模型输出与标准答案一致&#xff0c;不能从整体把控output质量 RLHF&#xff08;分为奖励模型训练、近端策略优化…

java数组与集合框架(二)-- 集合框架,Iterator迭代器,list

集合框架&#xff1a; 用于存储数据的容器。 Java 集合框架概述 一方面&#xff0c;面向对象语言对事物的体现都是以对象的形式&#xff0c;为了方便对多个对象的操作&#xff0c;就要对对象进行存储。另一方面&#xff0c;使用Array存储对象方面具有一些弊端&#xff0c;而…

小狐狸ChatGPT付费AI创作系统V2.8.0独立版 + H5端 + 小程序前端

狐狸GPT付费体验系统的开发基于国外很火的ChatGPT&#xff0c;这是一种基于人工智能技术的问答系统&#xff0c;可以实现智能回答用户提出的问题。相比传统的问答系统&#xff0c;ChatGPT可以更加准确地理解用户的意图&#xff0c;提供更加精准的答案。同时&#xff0c;小狐狸G…

09_Web组件

文章目录 Web组件Listener监听器ServletContextListener执行过程 Filter过滤器Filter与Servlet的执行 案例&#xff08;登录案例&#xff09; 小结Web组件 Web组件 JavaEE的Web组件&#xff08;三大Web组件&#xff09;&#xff1a; Servlet → 处理请求对应的业务Listener →…

图论做题笔记:dfs

Leetcode - 797&#xff1a;所有可能的路径 题目&#xff1a; 给你一个有 n 个节点的 有向无环图&#xff08;DAG&#xff09;&#xff0c;请你找出所有从节点 0 到节点 n-1 的路径并输出&#xff08;不要求按特定顺序&#xff09; graph[i] 是一个从节点 i 可以访问的所有节…

公司官网怎么才会被百度收录

在互联网时代&#xff0c;公司官网是企业展示自身形象、产品与服务的重要窗口。然而&#xff0c;即使拥有精美的官网&#xff0c;如果不被搜索引擎收录&#xff0c;就无法被用户发现。本文将介绍公司官网如何被百度收录的一些方法和步骤。 1. 创建和提交网站地图 创建网站地图…

el-select的错误提示不生效、el-select验证失灵、el-select的blur规则失灵

发现问题 在使用el-select进行表单验证的时候&#xff0c;发现点击下拉列表没选的情况下&#xff0c;他不会提示没有选择选项的信息&#xff0c;我设置了rule如下 <!--el-select--><el-form-item label"等级" prop"level"><el-select v-m…

代码随想录算法训练营Day39|LC62 不同路径LC63 不同路径II

一句话总结&#xff1a;不是太难&#xff0c;状态转移方程好想。 原题链接&#xff1a;62 不同路径 位置为(i, j)的点只能从上面或者左边过来&#xff0c;由此可列出状态转移方程。状态转移方程的初始化为所有第一排和第一列的点都初始化为1即可。 class Solution {public i…

MATLAB 点云高程渲染赋色(50)

MATLAB 点云高程渲染赋色(50) 一、算法介绍二、算法实现1.步骤2.代码3.效果一、算法介绍 自己写的高程渲染算法,点云的渲染效果更接近软件中的效果,具体的算法步骤和实现代码,以及最后的实现效果如下所示: 二、算法实现 1.步骤 1 首先读取了原始的点云数据 CSDN.ply…

【御控物联】JavaScript JSON结构转换(12):对象To数组——键值互换

文章目录 一、JSON结构转换是什么&#xff1f;二、核心构件之转换映射三、案例之《JSON对象 To JSON数组》四、代码实现五、在线转换工具六、技术资料 一、JSON结构转换是什么&#xff1f; JSON结构转换指的是将一个JSON对象或JSON数组按照一定规则进行重组、筛选、映射或转换…

Adobe Illustrator 2023 for Mac/Win:创意无限,设计无界

在数字艺术与设计领域&#xff0c;Adobe Illustrator 2023无疑是一颗璀璨的明星。这款专为Mac和Windows用户打造的矢量图形设计软件&#xff0c;以其强大的功能和卓越的性能&#xff0c;赢得了全球设计师的广泛赞誉。 Adobe Illustrator 2023在继承前代版本优点的基础上&#…

【DETR系列目标检测算法代码精讲】01 DETR算法01 DETR算法框架和网络结构介绍

为什么要有DETR 总所周知&#xff0c;传统的目标检测算法非常依赖于anchor和nms等手工设计操作&#xff0c;非常费时费力&#xff0c;自然而然的就产生了取消这些操作的想法。但是我们首先需要思考的是&#xff0c;为什么我们需要anchor和nms&#xff1f; 因为我们是没有指定…

正大国际:期货入门的基础知识是什么?

期货的概念很简单&#xff0c;就是一种远期合同&#xff0c;买卖双方约定交易物、交易价格与交易时间。难就难在如何理解它具备的杠杆率&#xff0c;人们是如何在这上面暴富或破产的 很多人抱有这么个错觉&#xff0c;觉得期货是一个小众市场。但其实&#xff0c;世界上所发生…

P-MapNet:Far-seeing Map Generator Enhanced by both SDMap and HDMap Priors

主页&#xff1a;homepage 参考代码&#xff1a;P-MapNet 动机与出发点 在感知系统中引入先验信息是可以提升静态元素感知网络的上限的&#xff0c;这篇文章对SD地图采用栅格化表示&#xff08;也就是图像形式&#xff09;&#xff0c;之后用CNN网络去抽取栅格化SD地图的信息&…