Pytorch|YOLO

news2025/1/18 18:07:54
  • 🍨 本文为🔗365天深度学习训练营中的学习记录博客
  • 🍖 原作者:K同学啊

一、 前期准备

1. 设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warnings

warnings.filterwarnings("ignore")             #忽略警告信息

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

device(type='cuda')

2. 导入数据

import pathlib

data_dir = "./data/weather_photos/"
data_dir = pathlib.Path(data_dir)

# 获取所有子目录路径
data_paths = list(data_dir.glob('*'))

# 使用 path.parts 获取正确的目录名称
classeNames = [path.parts[-1] for path in data_paths]
print(classeNames)

['cloudy', 'rain', 'shine', 'sunrise']

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    # transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

test_transform = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder("./data/weather_photos/",transform=train_transforms)
total_data
Dataset ImageFolder
    Number of datapoints: 1125
    Root location: ./data/weather_photos/
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=True)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )
total_data.class_to_idx

{'cloudy': 0, 'rain': 1, 'shine': 2, 'sunrise': 3}

3. 划分数据集

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset

(<torch.utils.data.dataset.Subset at 0x19600429450>,
 <torch.utils.data.dataset.Subset at 0x196004297e0>)

batch_size = 4

train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=1)

for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

Shape of X [N, C, H, W]:  torch.Size([4, 3, 224, 224])
Shape of y:  torch.Size([4]) torch.int64

二、搭建包含C3模块的模型

📌K同学啊提示:是否可以尝试通过增加/调整C3模块与Conv模块来提高准确率?

1. 搭建模型

import torch.nn.functional as F

def autopad(k, p=None):  # kernel, padding
    # Pad to 'same'
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    # Standard convolution
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

class Bottleneck(nn.Module):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))

class model_K(nn.Module):
    def __init__(self):
        super(model_K, self).__init__()
        
        # 卷积模块
        self.Conv = Conv(3, 32, 3, 2) 
        
        # C3模块1
        self.C3_1 = C3(32, 64, 3, 2)
        
        # 全连接网络层,用于分类
        self.classifier = nn.Sequential(
            nn.Linear(in_features=802816, out_features=100),
            nn.ReLU(),
            nn.Linear(in_features=100, out_features=4)
        )
        
    def forward(self, x):
        x = self.Conv(x)
        x = self.C3_1(x)
        x = torch.flatten(x, start_dim=1)
        x = self.classifier(x)

        return x

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
    
model = model_K().to(device)
model

Using cuda device

model_K(
  (Conv): Conv(
    (conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (C3_1): C3(
    (cv1): Conv(
      (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv3): Conv(
      (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
      (1): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
      (2): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (classifier): Sequential(
    (0): Linear(in_features=802816, out_features=100, bias=True)
    (1): ReLU()
    (2): Linear(in_features=100, out_features=4, bias=True)
  )
)

2. 查看模型详情

# 统计模型参数量以及其他指标
import torchsummary as summary
summary.summary(model, (3, 224, 224))
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 32, 112, 112]             864
       BatchNorm2d-2         [-1, 32, 112, 112]              64
              SiLU-3         [-1, 32, 112, 112]               0
              Conv-4         [-1, 32, 112, 112]               0
            Conv2d-5         [-1, 32, 112, 112]           1,024
       BatchNorm2d-6         [-1, 32, 112, 112]              64
              SiLU-7         [-1, 32, 112, 112]               0
              Conv-8         [-1, 32, 112, 112]               0
            Conv2d-9         [-1, 32, 112, 112]           1,024
      BatchNorm2d-10         [-1, 32, 112, 112]              64
             SiLU-11         [-1, 32, 112, 112]               0
             Conv-12         [-1, 32, 112, 112]               0
           Conv2d-13         [-1, 32, 112, 112]           9,216
      BatchNorm2d-14         [-1, 32, 112, 112]              64
             SiLU-15         [-1, 32, 112, 112]               0
             Conv-16         [-1, 32, 112, 112]               0
       Bottleneck-17         [-1, 32, 112, 112]               0
           Conv2d-18         [-1, 32, 112, 112]           1,024
      BatchNorm2d-19         [-1, 32, 112, 112]              64
             SiLU-20         [-1, 32, 112, 112]               0
             Conv-21         [-1, 32, 112, 112]               0
           Conv2d-22         [-1, 32, 112, 112]           9,216
      BatchNorm2d-23         [-1, 32, 112, 112]              64
             SiLU-24         [-1, 32, 112, 112]               0
             Conv-25         [-1, 32, 112, 112]               0
       Bottleneck-26         [-1, 32, 112, 112]               0
           Conv2d-27         [-1, 32, 112, 112]           1,024
      BatchNorm2d-28         [-1, 32, 112, 112]              64
             SiLU-29         [-1, 32, 112, 112]               0
             Conv-30         [-1, 32, 112, 112]               0
           Conv2d-31         [-1, 32, 112, 112]           9,216
      BatchNorm2d-32         [-1, 32, 112, 112]              64
             SiLU-33         [-1, 32, 112, 112]               0
             Conv-34         [-1, 32, 112, 112]               0
       Bottleneck-35         [-1, 32, 112, 112]               0
           Conv2d-36         [-1, 32, 112, 112]           1,024
      BatchNorm2d-37         [-1, 32, 112, 112]              64
             SiLU-38         [-1, 32, 112, 112]               0
             Conv-39         [-1, 32, 112, 112]               0
           Conv2d-40         [-1, 64, 112, 112]           4,096
      BatchNorm2d-41         [-1, 64, 112, 112]             128
             SiLU-42         [-1, 64, 112, 112]               0
             Conv-43         [-1, 64, 112, 112]               0
               C3-44         [-1, 64, 112, 112]               0
           Linear-45                  [-1, 100]      80,281,700
             ReLU-46                  [-1, 100]               0
           Linear-47                    [-1, 4]             404
================================================================
Total params: 80,320,536
Trainable params: 80,320,536
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 150.06
Params size (MB): 306.40
Estimated Total Size (MB): 457.04
----------------------------------------------------------------

三、 训练模型

1. 编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

2. 编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

3. 正式训练

model.train()model.eval()训练营往期文章中有详细的介绍。

📌如果将优化器换成 SGD 会发生什么呢?请自行探索接下来发生的诡异事件的原因

import copy

optimizer  = torch.optim.Adam(model.parameters(), lr= 1e-4)
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数

epochs     = 20

train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

best_acc = 0    # 设置一个最佳准确率,作为最佳模型的判别指标

for epoch in range(epochs):
    
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    # 保存最佳模型到 best_model
    if epoch_test_acc > best_acc:
        best_acc   = epoch_test_acc
        best_model = copy.deepcopy(model)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, 
                          epoch_test_acc*100, epoch_test_loss, lr))
    
# 保存最佳模型到文件中
PATH = './best_model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)

print('Done')

四、 结果可视化

1. Loss与Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)

epoch_test_acc, epoch_test_loss
(0.9333333333333333, 0.31915266352798577)
  • 前期准备:首先设置 GPU,如果设备支持则使用 GPU,否则使用 CPU。然后导入数据,对数据进行预处理,包括数据增强和归一化等操作。最后划分数据集,将数据集分为训练集和测试集,并创建数据加载器。
  • 搭建模型:搭建了一个包含 C3 模块的自定义模型,模型由卷积层、C3 模块和全连接层组成。其中 C3 模块由多个瓶颈层组成,可以提高模型的准确率。
  • 训练模型:编写了训练函数和测试函数,分别用于训练和测试模型。在训练过程中,使用 Adam 优化器和交叉熵损失函数,对模型进行了 20 个 epoch 的训练,并保存了最佳模型。
  • 结果可视化:对训练和测试结果进行了可视化,包括准确率和损失函数的变化曲线。最后,使用最佳模型对测试集进行测试,得到了最终的准确率和损失函数值

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2278573.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ASP.NET Core 中,认证(Authentication)和授权(Authorization)

在 ASP.NET Core 中&#xff0c;认证&#xff08;Authentication&#xff09;和授权&#xff08;Authorization&#xff09;是两个非常重要的概念。它们确保用户能够安全地访问应用程序&#xff0c;并且在访问过程中能按其权限被正确地控制。接下来&#xff0c;我将详细解释这两…

ThinkPHP 8的一对多关联

【图书介绍】《ThinkPHP 8高效构建Web应用》-CSDN博客 《2025新书 ThinkPHP 8高效构建Web应用 编程与应用开发丛书 夏磊 清华大学出版社教材书籍 9787302678236 ThinkPHP 8高效构建Web应用》【摘要 书评 试读】- 京东图书 使用VS Code开发ThinkPHP项目-CSDN博客 编程与应用开…

基于SpringBoot+Vue的药品管理系统【源码+文档+部署讲解】

系统介绍 基于SpringBootVue实现的药品管理系统采用前后端分离的架构方式&#xff0c;系统实现了用户登录、数据中心、药库管理、药房管理、物资管理、挂号管理、系统管理、基础设置等功能模块。 技术选型 开发工具&#xff1a;idea2020.3Webstorm2020.3 运行环境&#xff…

tomcat状态一直是Exited (1)

docker run -di -p 80:8080 --nametomcat001 你的仓库地址/tomcat:9执行此命令后tomcat一直是Exited(1)状态 解决办法&#xff1a; 用以下命令创建运行 docker run -it --name tomcat001 -p 80:8080 -d 你的仓库地址/tomcat:9 /bin/bash最终结果 tomcat成功启动

递归40题!再见递归

简介&#xff1a;40个问题&#xff0c;有难有易&#xff0c;均使用递归完成&#xff0c;需要C/C的指针、字符串、数组、链表等基础知识作为基础。 1、数字出现的次数 由键盘录入一个正整数&#xff0c;求该整数中每个数字出现的次数。 输入&#xff1a;19931003 输出&#xf…

《leetcode-runner》【图解】【源码】如何手搓一个debug调试器——架构

前文&#xff1a; 《leetcode-runner》如何手搓一个debug调试器——引言 文章目录 设计引入为什么这么设计存在难点1. 环境准备2. 调试程序 仓库地址&#xff1a;leetcode-runner 本文主要聚焦leetcode-runner对于debug功能的整体设计&#xff0c;并讲述设计原因以及存在的难点…

PyTorch使用教程(1)—PyTorch简介

PyTorch是一个开源的深度学习框架&#xff0c;由Facebook人工智能研究院&#xff08;FAIR&#xff09;于2016年开发并发布&#xff0c;其主要特点包括自动微分功能和动态计算图的支持&#xff0c;使得模型建立更加灵活‌。官网网址&#xff1a;https://pytorch.org。以下是关于…

用LLM做测试驱动开发:有趣又高效的尝试

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

5-1 创建和打包AXI Interface IP

创建和打包AXI Interface IP的前流程和后流程 step 1 &#xff1a; 选择类型 1&#xff1a; 将当前的工程打包成IP 2&#xff1a; 将当前的BD工程打包成IP 3&#xff1a; 将指定的源码打包成IP 4&#xff1a; 创建一个新的AXI 接口IP 其中3和4是比较常用的&#xff0c;本次…

国家统计局湖北调查总队副总队长张小青一行调研珈和科技农业遥感调查智能化算法

1月15日上午&#xff0c;国家统计局湖北调查总队党组成员、副总队长张小青一行莅临珈和科技开展调研。调研期间&#xff0c;张小青一行实地了解了珈和科技在自动化作物分布提取技术领域的最新成果&#xff0c;深入探讨了作物自动化处理模型在农业调查上应用的创新价值及优化方向…

基于微信小程序的电子点菜系统设计与实现(KLW+源码+讲解)

专注于大学生项目实战开发,讲解,毕业答疑辅导&#xff0c;欢迎高校老师/同行前辈交流合作✌。 技术范围&#xff1a;SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容&#xff1a;…

SQL Server 导入Excel数据

1、选中指定要导入到哪个数据库&#xff0c;右键选择 》任务 》导入数据 2、数据源 选择Excel&#xff0c;点击 下一步(Next) 3、目前 选择OLE DB Provider &#xff0c;点击 下一步&#xff08;Next&#xff09; 4、默认 &#xff0c;点击 下一步&#xff08;Next&#xff09;…

【Excel】【VBA】双列排序:坐标从Y从大到小排列之后相同Y坐标的行再对X从小到大排列

Excel VBA 双列排序 功能概述 这段VBA代码实现了Excel中的双列排序功能&#xff0c;具体是&#xff1a; 跳过前3行表头先按C列数据从大到小排序在C列值相同的情况下&#xff0c;按B列从大到小排序排序时保持整行数据的完整性 流程图 #mermaid-svg-XJERemQluZlM4K8l {font-fa…

【C++】构造函数与析构函数

写在前面 构造函数与析构函数都是属于类的默认成员函数&#xff01; 默认成员函数是程序猿不显示声明定义&#xff0c;编译器会中生成。 构造函数和析构函数的知识需要建立在有初步类与对象的基础之上的&#xff0c;关于类与对象不才在前面笔记中有详细的介绍&#xff1a;点我…

1月17日星期五今日早报简报微语报早读

1月17日星期五&#xff0c;农历腊月十八&#xff0c;早报#微语早读。 1、广东明确旅馆承担防偷拍责任&#xff1a;应确保客房没有偷窥等设备&#xff1b; 2、商务部&#xff1a;手机补贴不用交旧手机&#xff1b; 3、中国汽车工业协会&#xff1a;坚决反对拜登政府禁止使用中…

【Linux】gdb_进程概念

&#x1f4e2;博客主页&#xff1a;https://blog.csdn.net/2301_779549673 &#x1f4e2;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01; &#x1f4e2;本文由 JohnKi 原创&#xff0c;首发于 CSDN&#x1f649; &#x1f4e2;未来很长&#…

深入内核讲明白Android Binder【二】

深入内核讲明白Android Binder【二】 前言一、Binder通信内核源码整体思路概述1. 客户端向服务端发送数据流程概述1.1 binder_ref1.2 binder_node1.3 binder_proc1.4 binder_thread 2. 服务端的binder_node是什么时候被创建的呢&#xff1f;2.1 Binder驱动程序为服务创建binder…

记录一次微信小程序使用云能力开发的过程

对于开发微信小程序云开发不知从何起的同学们&#xff0c;可以当作一次参考。虽说官方有文档&#xff0c;有模板示例&#xff0c;但是这些都是片段或者完整的结果展示。对于初学或者开发经验较少的同学们&#xff0c;可能不知先从那里入手进行第一步的开发。下面解析下构建微信…

初学stm32 --- SPI驱动25Q128 NOR Flash

目录 SPI介绍 SPI结构框图介绍 SPI外设对应的引脚 SPI数据发送与接收 SPI工作原理 SPI 全双工模式的通信机制 从机返回主机之前保存的数据 SPI工作模式介绍 SPI相关寄存器介绍&#xff08;F1 / F4 / F7&#xff09; SPI控制寄存器1&#xff08;SPI_CR1&#xff09; SPI状…

数据库基础练习1(创建表,设置外键,检查,不为空,主键等约束)安装mysql详细步骤

安装MySQL详细步骤 1. 下载 MySQL 安装程序 访问 MySQL 官方网站&#xff1a;MySQL Downloads。在下载页面&#xff0c;选择 "MySQL Community (GPL) Downloads"。在 "MySQL Community Server" 部分&#xff0c;根据你的操作系统&#xff08;Windows&…