flink on yarn-per job源码解析、flink on k8s介绍

news2024/11/25 12:15:19

 Flink 架构概览–JobManager

JobManager的功能主要有:

  • 将 JobGraph 转换成 Execution Graph,最终将 Execution Graph 拿来运行
  • Scheduler 组件负责 Task 的调度
  • Checkpoint Coordinator 组件负责协调整个任务的 Checkpoint,包括 Checkpoint 的开始和完成
  • 通过 Actor System 与 TaskManager 进行通信
  • 其它的一些功能,例如 Recovery Metadata,用于进行故障恢复时,可以从 Metadata 里面读取数据。

Flink 架构概览–TaskManager

TaskManager 是负责具体任务的执行过程,在 JobManager 申请到资源之后开始启动。TaskManager 里面的主要组件有:

  • Memory & I/O Manager,即内存 I/O 的管理
  • Network Manager,用来对网络方面进行管理
  • Actor system,用来负责网络的通信

TaskManager 被分成很多个 TaskSlot,每个任务都要运行在一个 TaskSlot 里面,TaskSlot 是调度资源里的最小单位。

在介绍 Yarn 之前先简单的介绍一下 Flink Standalone 模式,这样有助于更好地了解 Yarn 和 Kubernetes 架构。

  • 在 Standalone 模式下,Master 和 TaskManager 可以运行在同一台机器上,也可以运行在不同的机器上。
  • 在 Master 进程中,Standalone ResourceManager 的作用是对资源进行管理。当用户通过 Flink Cluster Client 将 JobGraph 提交给 Master 时,JobGraph 先经过 Dispatcher。
  • 当 Dispatcher 收到客户端的请求之后,生成一个 JobManager。接着 JobManager 进程向 Standalone ResourceManager 申请资源,最终再启动 TaskManager。
  • TaskManager 启动之后,会有一个注册的过程,注册之后 JobManager 再将具体的 Task 任务分发给这个 TaskManager 去执行。

以上就是一个 Standalone 任务的运行过程。

Flink on Yarn 原理及实践

Yarn 架构原理–总览

Yarn 模式在国内使用比较广泛,基本上大多数公司在生产环境中都使用过 Yarn 模式。首先介绍一下 Yarn 的架构原理,因为只有足够了解 Yarn 的架构原理,才能更好的知道 Flink 是如何在 Yarn 上运行的。

Yarn 的架构原理如上图所示,最重要的角色是 ResourceManager,主要用来负责整个资源的管理,Client 端是负责向 ResourceManager 提交任务。

用户在 Client 端提交任务后会先给到 Resource Manager。Resource Manager 会启动 Container,接着进一步启动 Application Master,即对 Master 节点的启动。当 Master 节点启动之后,会向 Resource Manager 再重新申请资源,当 Resource Manager 将资源分配给 Application Master 之后,Application Master 再将具体的 Task 调度起来去执行。

Yarn 架构原理–组件

Yarn 集群中的组件包括:

  • ResourceManager (RM):ResourceManager (RM)负责处理客户端请求、启动/监控 ApplicationMaster、监控 NodeManager、资源的分配与调度,包含 Scheduler 和 Applications Manager。
  • ApplicationMaster (AM):ApplicationMaster (AM)运行在 Slave 上,负责数据切分、申请资源和分配、任务监控和容错。
  • NodeManager (NM):NodeManager (NM)运行在 Slave 上,用于单节点资源管理、AM/RM通信以及汇报状态。
  • Container:Container 负责对资源进行抽象,包括内存、CPU、磁盘,网络等资源。

以在 Yarn 上运行 MapReduce 任务为例来讲解下 Yarn 架构的交互原理:

  • 首先,用户编写 MapReduce 代码后,通过 Client 端进行任务提交
  • ResourceManager 在接收到客户端的请求后,会分配一个 Container 用来启动 ApplicationMaster,并通知 NodeManager 在这个 Container 下启动 ApplicationMaster。
  • ApplicationMaster 启动后,向 ResourceManager 发起注册请求。接着 ApplicationMaster 向 ResourceManager 申请资源。根据获取到的资源,和相关的 NodeManager 通信,要求其启动程序。
  • 一个或者多个 NodeManager 启动 Map/Reduce Task。
  • NodeManager 不断汇报 Map/Reduce Task 状态和进展给 ApplicationMaster。
  • 当所有 Map/Reduce Task 都完成时,ApplicationMaster 向 ResourceManager 汇报任务完成,并注销自己。

 Flink on Yarn–Per Job

Flink on Yarn 中的 Per Job 模式是指每次提交一个任务,然后任务运行完成之后资源就会被释放。在了解了 Yarn 的原理之后,Per Job 的流程也就比较容易理解了,具体如下:

  • 首先 Client 提交 Yarn App,比如 JobGraph 或者 JARs。
  • 接下来 Yarn 的 ResourceManager 会申请第一个 Container。这个 Container 通过 Application Master 启动进程,Application Master 里面运行的是 Flink 程序,即 Flink-Yarn ResourceManager 和 JobManager。
  • 最后 Flink-Yarn ResourceManager 向 Yarn ResourceManager 申请资源。当分配到资源后,启动 TaskManager。TaskManager 启动后向 Flink-Yarn ResourceManager 进行注册,注册成功后 JobManager 就会分配具体的任务给 TaskManager 开始执行。

Flink on Yarn–Session

在 Per Job 模式中,执行完任务后整个资源就会释放,包括 JobManager、TaskManager 都全部退出。而 Session 模式则不一样,它的 Dispatcher 和 ResourceManager 是可以复用的。Session 模式下,当 Dispatcher 在收到请求之后,会启动 JobManager(A),让 JobManager(A) 来完成启动 TaskManager,接着会启动 JobManager(B) 和对应的 TaskManager 的运行。当 A、B 任务运行完成后,资源并不会释放。Session 模式也称为多线程模式,其特点是资源会一直存在不会释放,多个 JobManager 共享一个 Dispatcher,而且还共享 Flink-YARN ResourceManager。

Session 模式和 Per Job 模式的应用场景不一样。Per Job 模式比较适合那种对启动时间不敏感,运行时间较长的任务。Seesion 模式适合短时间运行的任务,一般是批处理任务。若用 Per Job 模式去运行短时间的任务,那就需要频繁的申请资源,运行结束后,还需要资源释放,下次还需再重新申请资源才能运行。显然,这种任务会频繁启停的情况不适用于 Per Job 模式,更适合用 Session 模式。

接下来细讲一下perjob模式。

YARN job工作流程

  1. Client向ResourceManager提交应用程序(包含启动ApplicationMaster的命令)。
  2. ResourceManager为应用分配第一个Container并与对应的NodeManager通信要求它启动ApplicationMaster。
  3. ApplicationMaster向ResourceManager注册并与ResourceManager保持心跳。
  4. ApplicationMaster为任务的运行向ResourceManager申请若干Container资源。
  5. ApplicationMaster领取ResourceManager分配的Container并初始化相关运行信息,便与对应的NodeManager通信要求它启动Container。
  6. NodeManager为Container设置好运行环境(下载运行资源、设置环境变量、资源限制等),将启动命令写到脚本文件中,运行脚本启动Container。
  7. Container运行期间向ApplicationMaster汇报自己的状态和任务进度。
  8. 应用程序运行完成后,ApplicationMaster向ResourceManager申请注销自己,释放相关Container资源。

用户程序什么时候、在哪、谁调用执行的?

入口示例程序

是一个Stream job

./bin/flink run -t yarn-per-job --detached ./examples/streaming/TopSpeedWindow

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1552840.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【MySQL】6.MySQL主从复制和读写分离

主从复制 主从复制与读写分离 通常数据库的读/写都在同一个数据库服务器中进行; 但这样在安全性、高可用性和高并发等各个方面无法满足生产环境的实际需求; 因此,通过主从复制的方式同步数据,再通过读写分离提升数据库的并发负载…

Day54:WEB攻防-XSS跨站Cookie盗取表单劫持网络钓鱼溯源分析项目平台框架

目录 XSS跨站-攻击利用-凭据盗取 XSS跨站-攻击利用-数据提交 XSS跨站-攻击利用-flash钓鱼 XSS跨站-攻击利用-溯源综合 知识点: 1、XSS跨站-攻击利用-凭据盗取 2、XSS跨站-攻击利用-数据提交 3、XSS跨站-攻击利用-网络钓鱼 4、XSS跨站-攻击利用-溯源综合 漏洞原理…

深度学习理解及学习推荐(持续更新)

主推YouTuBe和Bilibili 深度学习博主推荐: Umar Jamil - YouTubehttps://www.youtube.com/umarjamilai StatQuest with Josh Starmer - YouTubehttps://www.youtube.com/statquest RNN Illustrated Guide to Recurrent Neural Networks: Understanding the Int…

知乎:多云架构下大模型训练,如何保障存储稳定性?

知乎,中文互联网领域领先的问答社区和原创内容平台,2011 年 1 月正式上线,月活跃用户超过 1 亿。平台的搜索和推荐服务得益于先进的 AI 算法,数百名算法工程师基于数据平台和机器学习平台进行海量数据处理和算法训练任务。 为了提…

生成式 AI 学习资源大汇总

这里汇聚了该领域的海量学习资源,从研究更新到面试技巧,从课程材料到免费课程,还有实用代码,一应俱全,是你工作流程中的得力助手! 前沿研究:每月精心筛选的最佳生成式 AI 论文列表,让…

Flink集群主节点JobManager启动分析

1.概述 JobManager 是 Flink 集群的主节点,它包含三大重要的组件: ResourceManager Flink集群的资源管理器,负责slot的管理和申请工作。 Dispatcher 负责接收客户端提交的 JobGraph,随后启动一个Jobmanager,类似 Yarn…

C#全新一代医院手术麻醉系统围术期全流程源码

目录 一、麻醉学科的起源 二、麻醉前访视与评估记录单 患者基本信息 临床诊断 患者重要器官功能及疾病情况 病人体格情况分级 手术麻醉风险评估 拟施麻醉方法及辅助措施 其他需要说明的情况 访视麻醉医师签名 访视时间 与麻醉相关的检查结果 三、手术麻醉信息系统…

蓝桥杯单片机快速开发笔记——PCF8591的DAC模拟电压输出

一、原理分析 PCF8591电压信号探测器:http://t.csdnimg.cn/R38tC IIC原理:http://t.csdnimg.cn/v4dSv IIC指令:http://t.csdnimg.cn/RY6yi HC573/HC138:http://t.csdnimg.cn/W0a0U 数码管:http://t.csdnimg.cn/kfm9Y 独…

jmeter总结之:Regular Expression Extractor元件

Regular Expression Extractor是一个后处理器元件,使用正则从服务器的响应中提取数据,并将这些数据保存到JMeter变量中,以便在后续的请求或断言中使用。在处理动态数据或验证响应中的特定信息时很有用。 添加Regular Expression Extractor元…

实时数仓之实时数仓架构(Hudi)

目前比较流行的实时数仓架构有两类,其中一类是以FlinkDoris为核心的实时数仓架构方案;另一类是以湖仓一体架构为核心的实时数仓架构方案。本文针对FlinkHudi湖仓一体架构进行介绍,这套架构的特点是可以基于一套数据完全实现Lambda架构。实时数…

20232831 2023-2024-2 《网络攻防实践》第4次作业

目录 20232831 2023-2024-2 《网络攻防实践》第4次作业1.实验内容2.实验过程(1)ARP缓存欺骗攻击(2)ICMP重定向攻击(3)SYN Flood攻击(4)TCP RST攻击(5)TCP会话…

ocr之opencv配合paddleocr提高识别率

背景1:在这篇文章编写之前使用到的工具并不是opencv,而是java原有的工具BufferedImage。但因为在使用过程中会频繁切图,放大,模糊,所以导致的jvm内存使用量巨大,分秒中都在以百兆的速度累加内存空间。这种情…

docker可视化界面 - portainer安装

目录 一、官方安装说明 二、安装portainer 2.1拉取镜像 2.2运行portainer容器 2.3登录和使用portainer 一、官方安装说明: Install PortainerChoose to install Portainer Business Edition or Portainer Community Edition.https://www.portainer.io/install…

本地部署大模型的几种工具(上-相关使用)

目录 前言 为什么本地部署 目前的工具 vllm 介绍 下载模型 安装vllm 运行 存在问题 chatglm.cpp 介绍 下载 安装 运行 命令行运行 webdemo运行 GPU推理 ollama 介绍 下载 运行 运行不同参数量的模型 存在问题 lmstudio 介绍 下载 使用 下载模型文件…

OSCP靶场--plum

OSCP靶场–plum 考点(CVE-2022-25018 linux邮箱信息收集提权) 1.nmap扫描 ┌──(root㉿kali)-[~/Desktop] └─# nmap -Pn -sC -sV 192.168.178.28 --min-rate 2500 Starting Nmap 7.92 ( https://nmap.org ) at 2024-03-28 05:41 EDT Nmap scan report for 192.168.178.2…

第十二章 微服务核心(一)

一、Spring Boot 1.1 SpringBoot 构建方式 1.1.1 通过官网自动生成 进入官网:https://spring.io/,点击 Projects --> Spring Framework; 拖动滚动条到中间位置,点击 Spring Initializr 或者直接通过 https://start.spring…

【项目技术介绍篇】若依管理系统功能介绍

作者介绍:本人笔名姑苏老陈,从事JAVA开发工作十多年了,带过大学刚毕业的实习生,也带过技术团队。最近有个朋友的表弟,马上要大学毕业了,想从事JAVA开发工作,但不知道从何处入手。于是&#xff0…

RTOS线程切换的过程和原理

0 前言 RTOS中最重要的一个概念就是线程,线程的按需切换能够满足RTOS的实时性要求,同时能将复杂的需求分解成一个个线程执行减轻我们开发负担。 本文从栈的角度出发,详细介绍RTOS线程切换的过程和原理。 注:本文参考的RTOS是RT-T…

硬件项目中的turn-key 是啥意思?案例应用

在硬件项目中,turn-key是指一种工程项目模式,即交钥匙工程。这种模式通常由独立的第三方软件厂商直接与芯片厂商合作,基于芯片厂商的硬件方案和协议,集成成熟的上层软件和应用,并整套提供给电子产品生产厂商。这种模式…

实现DevOps需要什么?

实现DevOps需要什么? 硬性要求:工具上的准备 上文提到了工具链的打通,那么工具自然就需要做好准备。现将工具类型及对应的不完全列举整理如下: 代码管理(SCM):GitHub、GitLab、BitBucket、SubV…