Gemma开源AI指南

news2025/1/10 2:11:00

近几个月来,谷歌推出了 Gemini 模型,在人工智能领域掀起了波澜。 现在,谷歌推出了 Gemma,再次引领创新潮流,这是向开源人工智能世界的一次变革性飞跃。

与前代产品不同,Gemma 是一款轻量级、小型模型,旨在帮助全球开发人员负责任地构建 AI 解决方案,与 Google 的 AI 原则紧密结合。 这一具有里程碑意义的举措标志着人工智能技术民主化的重要时刻,为开发人员和研究人员提供了前所未有的使用尖端工具的机会。

作为一个开源模型,Gemma 不仅使最先进的人工智能技术的获取变得民主化,还鼓励全球开发者、研究人员和爱好者社区为其进步做出贡献。 这种协作方法旨在加速人工智能创新,消除障碍并培育共享知识和资源的文化。

在本文中,我们将使用 Keras 探索 Gemma 模型,并尝试一些文本生成任务的实验,包括问答、摘要和模型微调。

1、什么是Gemma

Gemma 是 Google AI 系列的最新成员,由轻量级的顶级开放模型组成,这些模型源自为 Gemini 模型提供动力的相同技术。 这些文本到文本、仅限解码器的大型语言模型以英语提供,提供开放权重、预训练变体和指令调整变体。 Gemma 模型在各种文本生成任务中表现出色,例如回答问题、摘要和推理。 其紧凑的尺寸有助于在笔记本电脑、台式机或个人云基础设施等资源有限的环境中进行部署,实现对尖端人工智能模型的民主化访问并刺激所有人的创新。

Gemma的主要特性如下:

  • 模型尺寸:Google 推出了两种尺寸的 Gemma 模型:Gemma 2B 和 Gemma 7B,每种模型都提供预训练和指令调整的变体。
  • Responsible AI 工具包:Google 推出了 Responsible Generative AI 工具包,帮助开发人员使用 Gemma 创建更安全的 AI 应用程序。
  • 用于推理和微调的工具链:开发人员可以通过本机 Keras 3.0 利用工具链在 JAX、PyTorch 和 TensorFlow 等主要框架中进行推理和监督微调 (SFT)。
    轻松部署:经过预训练和指令调整的 Gemma 模型可部署在笔记本电脑、工作站或 Google Cloud 上。 它们可以轻松部署在 Vertex AI 和 Google Kubernetes Engine (GKE) 上。
  • 性能:与其他开放式模型相比,Gemma 模型在其尺寸方面实现了顶级性能。 它们在关键基准上的表现明显优于更大的模型,同时保持安全和负责任的输出的严格标准。

2、Gemma vs. Gemini

谷歌表示,Gemma 虽然与 Gemini 不同,但与其共享重要的技术和基础设施组件。 这一共同的基础使 Gemma 2B 和 Gemma 7B 能够相对于其他类似尺寸的开放式模型实现“一流的性能”。

3、Gemma vs. Llama 2

Google 将 Gemma 7B 与 Meta 的 Llama 2 7B 在推理、数学和代码生成等各个领域进行了比较。 Gemma 在所有基准测试中均显着优于 Llama 2。 例如,在推理方面,Gemma 在 BBH 基准测试中得分为 55.1,而 Llama 2 的得分为 32.6。 数学方面,Gemma 在 GSM8K 基准测试中得分为 46.4,而 Llama 2 得分为 14.6。 Gemma 在解决复杂问题方面也表现出色,在 MATH 4-shot 基准测试中得分为 24.3,超过了 Llama 2 的 2.5 分。 此外,在 Python 代码生成方面,Gemma 得分为 32.3,超过了 Llama 2 的 12.8 分。

Gemma 可在 Colab 和 Kaggle 笔记本上轻松使用,并与 Hugging Face、NVIDIA、NeMo、MaxText 和 TensorRT-LLM 等流行工具无缝集成。 此外,开发人员还可以通过 Keras 3.0 利用 Google 的工具链在 JAX、PyTorch 和 TensorFlow 等领先框架中进行推理和监督微调 (SFT)。

4、实验1:Gemma与 KerasNLP的结合

KerasNLP 提供了对 Gemma 模型的便捷访问,使研究人员和从业者能够轻松探索和利用其功能来满足他们的需求。

4.1 启用模型访问权限

Gemma-7b 是一个受控模型,需要用户请求访问。按照如下步骤启用模型访问。

  • 登录你的 Kaggle 帐户或注册一个新帐户(如果还没有帐户)。
  • 使用这个链接打开 Kaggle上的Gemma 模型页面。
  • 在 Gemma 模型页面上,单击“请求访问”链接以请求访问模型。
  • 在下一页上提供你的名字、姓氏和电子邮件 ID。
  • 在接下来的页面中单击“接受”以接受许可协议。

4.2 Kaggle 访问密钥生成

要访问该模型,你还需要 Kaggle 访问令牌。 可以通过转到Kaggle设置来,然后单击 API 下的“创建新令牌”按钮来创建新的访问令牌。

4.3 使用 KerasNLP 通过 Gemma 创建脚本

为了运行该模型,Gemma 需要一个具有 16GB RAM 的系统。 在本节中,我们将使用 Google Colab 而不是个人机器。 如果符合要求的规格,可以尝试在你的计算机上运行相同的代码。

  • 打开链接“欢迎来到 Colaboratory — Colaboratory”,然后单击“登录”以登录到你的 Colab 帐户;如果没有帐户,则创建一个新帐户。
  • 通过Runtime→更改运行时类型→T4 GPU→保存将Runtime更改为T4 GPU。

4.4 设置环境变量

要使用 Gemma,你必须提供 Kaggle 访问令牌。 在左侧窗格中选择 Secrets (🔑),然后添加你的 KAGGLE_USERNAME 和 KAGGLE_KEY

单击 + 新笔记本 按钮创建新的 Colab 笔记本。 设置 KAGGLE_USERNAME 和 KAGGLE_KEY 的环境变量。

import os
from google.colab import userdata

os.environ["KAGGLE_USERNAME"] = userdata.get('KAGGLE_USERNAME')
os.environ["KAGGLE_KEY"] = userdata.get('KAGGLE_KEY')

4.5 安装依赖项

使用以下命令安装访问 gemma 模型所需的 python 库。 单击播放图标以执行单元格。

!pip install -q -U keras-nlp
!pip install -q -U keras>=3

4.6 导入包

导入 Keras 和 KerasNLP。

import keras
import keras_nlp

4.7 选择后端

Keras 适用于 TensorFlow、JAX 和 Torch。 选择 jax 作为本部分的后端。

import os
os.environ["KERAS_BACKEND"] = "jax"

4.8 创建模型

在本教程中,我们将使用 GemmaCausalLM 创建一个模型,这是一个用于因果语言建模的端到端 Gemma 模型。 使用 from_preset 方法创建模型。  from_preset 根据预设的架构和权重实例化模型。

gemma_lm = keras_nlp.models.GemmaCausalLM.from_preset("gemma_2b_en")

使用 summary获取有关模型的更多信息:

gemma_lm.summary()

4.9 生成文本

gemma 模型有一个生成方法,可以根据提示生成文本。 可选的 max_length 参数指定生成序列的最大长度。

gemma_lm.generate("What is the meaning of life?", max_length=64)
gemma_lm.generate("How does the brain work?", max_length=64)

还可以使用列表作为输入来提供批量提示:

gemma_lm.generate(
    ["What is the meaning of life?",
     "How does the brain work?"],
    max_length=64)

5、实验2:使用HuggingFace的Gemma模型

通过 Hugging Face 平台可以方便地访问和使用 Gemma 模型。 该模型易于探索,使研究人员和实践者能够发挥其潜力。

5.1 启用 Gemma-7b 访问

Gemma-7b 是一个受控模型,需要用户请求访问。

按照步骤启用模型访问:

  • 登录你的 Hugging Face 帐户或注册一个新帐户(如果还没有帐户)。
  • 可以访问这里请求访问权限。

访问链接后,请确认许可协议。 然后,你将被定向到一个页面,可以在其中授权 Kaggle 分享你的 HuggingFace 详细信息。

确认许可后,继续授权 Kaggle 分享你的 Hugging Face 详细信息。 为了进一步访问,此步骤是必需的。

授权 Kaggle 后,将被重定向到显示许可协议的页面。 单击“接受”按钮即同意条款和条件。

接受许可协议后,现在可以访问 Gemma-7b 模型。

要确认你的访问权限,请前往这个链接 ,如果成功访问 Gemma-7b 模型,将收到有关它的相关信息。

5.2 Hugginface访问令牌生成

要访问该模型,还需要 HuggingFace 访问令牌。 可以通过转到“设置”,然后转到左侧边栏中的“访问令牌”,然后单击“新令牌”按钮来创建新的访问令牌来生成一个。

5.3 用 HuggingFace 与 Gemma 创建一个脚本

为了运行该模型,Gemma 需要一个具有 16GB RAM 的系统。 在本节中,我们将使用 Google Colab 而不是个人机器。 如果符合要求的规格,可以尝试在你的计算机上运行相同的代码。

  • 打开链接“欢迎来到 Colaboratory — Colaboratory”,然后单击“登录”以登录到你的 Colab 帐户;如果没有帐户,则创建一个新帐户。
  • 通过Runtime→更改运行时类型→T4 GPU→保存将Runtime更改为T4 GPU。
  • 要使用 Gemma,你必须提供 Hugging Face 访问令牌。 在左侧窗格中选择 Secrets (🔑) 并添加你的 HF_TOKEN 密钥。
  • 单击 + 新笔记本按钮创建新的 Colab 笔记本。

5.4 安装依赖项

使用以下命令安装访问 gemma 模型所需的 python 库。 单击播放图标以执行单元格。

!pip install transformers torch accelerate

5.5 Huggingface登录

要使用 Gemma 模型,你需要验证 Hugging Face 帐户。 将提供的代码添加到新单元格以进行 Hugging Face 登录。 单击播放图标以执行单元格。 在指定单元格中输入你的 Hugging Face 访问令牌以完成身份验证过程。

5.6 选择模型

使用以下命令访问 gemma-2b-it 模型。 你还可以尝试使用任何一种 Gemma 模型。 请访问 这个链接以了解有关其他 Gemma 模型的更多信息。

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it")

5.7 生成文本

通过执行以下代码片段来测试模型。

input_text = "What is Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt")

outputs = model.generate(**input_ids, max_new_tokens=1024)
print(tokenizer.decode(outputs[0]))

你将得到如下输出:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1542780.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Web安全基础入门+信息收集篇

教程介绍 学习信息收集,针对域名信息,解析信息,网站信息,服务器信息等;学习端口扫描,针对端口进行服务探针,理解服务及端口对应关系;学习WEB扫描,主要针对敏感文件,安全漏洞,子域名信息等;学习信息收集方法…

AIGC、3D模型、轻量化、格式转换、可视化、数字孪生引擎...

老子云3D可视化快速开发平台,集云压缩、云烘焙、云存储云展示于一体,使3D模型资源自动输出至移动端PC端、Web端,能在多设备、全平台进行展示和交互,是全球领先、自主可控的自动化3D云引擎。 平台架构 平台特性 基于 HTML5 和 Web…

踏青智能伙伴,尽享户外乐趣

春风拂面,花香四溢,正是踏青赏花的好时节。想要尽情享受户外的美好时光吗?华为手环8将是你户外的好搭子!它不仅拥有精准的天气预报功能,还能播放你喜爱的音乐,记录户外步行轨迹,并实现遥控拍照&…

[深度学习]yolov8+pyqt5搭建精美界面GUI设计源码实现一

【简单介绍】 基于YOLOv8与PyQt5的精美界面GUI设计,旨在为用户提供一个直观、易用且功能强大的目标检测平台。通过结合YOLOv8的先进目标检测能力与PyQt5的丰富界面设计元素,我们打造了一款高效、稳定的软件产品。 在界面设计上,我们注重用户…

【机器学习】基于北方苍鹰算法优化的BP神经网络分类预测(NGO-BP)

目录 1.原理与思路2.设计与实现3.结果预测4.代码获取 1.原理与思路 【智能算法应用】智能算法优化BP神经网络思路【智能算法】北方苍鹰优化算法(NGO)原理及实现 2.设计与实现 数据集: 数据集样本总数2000 多输入单输出:样本特征24&#x…

语音转文字——sherpa ncnn语音识别离线部署C++实现

简介 Sherpa是一个中文语音识别的项目,使用了PyTorch 进行语音识别模型的训练,然后训练好的模型导出成 torchscript 格式,以便在 C 环境中进行推理。尽管 PyTorch 在 CPU 和 GPU 上有良好的支持,但它可能对资源的要求较高&#x…

【4月】CDA Club 第2期数据分析组队打卡学习活动开启!

活动名称 CDA Club 第2期数据分析组队打卡学习活动 活动介绍 本次打卡活动由CDA俱乐部旗下学术部主办。目的是通过数据分析科普内容,为数据分析爱好者提供学习和交流的机会。方便大家利用碎片化时间在线学习,以组队打卡的形式提升学习效果&#xff0c…

MySQL 中 聚集索引、非聚集索引、覆盖索引、索引下推 到底是什么

一、什么是 聚集索引、非聚集索引 在MySQL数据库中,索引是提高查询效率的关键。而聚集索引、非聚集索引、覆盖索引、索引下推其实是索引优化的重要策略之一。那这些名词的含义到底是什么呢? 在开始分析前,先来了解下 B 树的索引结构 和 回表…

Java面试必问题17:ArrayList与LinkedList区别

是否保证线程安全: ArrayList 和LinkedList 都是不同步的,也就是不保证线程安全;底层数据结构: Arraylist 底层使用的是Object 数组;LinkedList 底层使用的是双向链表 数据结构(JDK1.6 之前为循环链表&…

Frida 官方手册 中文版 ( 机翻+人翻 )

Frida 英文文档:https://frida.re/docs/home/ Frida 中文文档:https://pypi.org/project/frida-zhongwen-wendang/ 目的:给自己一个认真阅读文档的机会!!! 部分名词找不到合适的中文表达,直接使…

Day18 代码随想录(1刷) 二叉树

513. 找树左下角的值 给定一个二叉树的 根节点 root,请找出该二叉树的 最底层 最左边 节点的值。 假设二叉树中至少有一个节点。 示例 1: 输入: root [2,1,3] 输出: 1示例 2: 输入: [1,2,3,4,null,5,6,null,null,7] 输出: 7提示: 二叉树的节点个数的范围是 [1,104]…

echarts 柱形图如何让其中一个柱子的颜色跟其他柱子不同

如何让其中一个柱子的颜色跟其他柱子不同 series: [{data: [120,// 使用对象的形式, value代表当前值, itemStyle设置样式{value: 200,itemStyle: {color: #a90000}},150,80,70,110,130],type: bar}]设置单个柱子颜色: 柱形图单个柱子颜色: https://e…

AI预测福彩3D第17弹【2024年3月25日预测--第4套算法重新开始计算第3次测试】

昨天对第4套算法进行了第二次测试,其中第二套方案已成功命中。测试的目的主要是为了记录统计两套方案的稳定性和命中率。今天继续对第4套算法进行测试,今天是第3次测试,同样测试两个方案。废话不多说,直接上结果。 2024…

【Qt问题】Qt中文乱码问题解决方案(详细汇总)

【Qt问题】Qt中文乱码问题解决方案(详细汇总) 一、问题描述: 由于Qt对中文的支持不是很好,使用QtCreator进行开发的过程中,经常会出现各种乱七八糟的中文乱码问题,比如我前面遇到的 【Qt问题】初始化菜单…

一个开源的分布式在线教育系统

项目介绍 roncoo-education —— 一个分布式在线教育系统。目前主要功能有课程点播功能,支持多家视频云的接入,课程附件管理功能,支持多家存储云的接入,可以帮助个人或者企业快速搭建一个轻量级的在线教育平台。 系统分为后台、前…

Python数据匹配和记录链接库之recordlinkage使用详解

概要 Python的recordlinkage库为数据匹配和记录链接提供了一个强大的工具集,使得从不同数据源识别重复或相关记录变得简单高效。这对于数据清洗、合并数据集、实体识别等任务至关重要。 recordlinkage库简介 recordlinkage提供了一套全面的工具来进行复杂的记录比较、匹配和…

程序人生 - 某程序员哀叹:辛辛苦苦写几年代码,做了些业务,有了点成就感,但回头一看80%都没用,没法写到简历上!

什么事情会让你脊背一凉,细思极恐? 一位程序员说了一件很可怕的事: 辛辛苦苦写了几年代码,做了些业务,在一片祥和中有了点成就感。然而回头一看,80%是没啥用的,甚至没法写到简历上&…

[ Linux ] git工具的基本使用(仓库的构建,提交)

1.安装git yum install -y git 2.打开Gitee,创建你的远程仓库,根据提示初始化本地仓库(这里以我的仓库为例) 新建好仓库之后跟着网页的提示初始化便可以了 3.add、commit、push三板斧 git add . //add仓库新增(变…

HTTP状态码(3)

HTTP 状态码负责表示客户端 HTTP 请求的返回结果、标记服务器端的处理是否正常、通知出现的错误等工作 状态码告知从服务器端返回的请求结果 状态码的职责是当客户端向服务器端发送请求时,描述返回的请求结果。借助状态码,用户可以知道服务器端是正常…

vue+elementUI实现树形穿梭框

1.实现效果 2.整体思路 将左侧选中的节点移动到右侧,还要保持树结构,意味着移动子节点,需要把该子节点对应的父节点甚至父节点的父节点一并移到右侧形成一个新的树结构,树结构的层级和原来的树保持一致,只是右侧展示…