Python编程—Ajax数据爬取

news2024/11/16 22:50:46

Python编程—Ajax数据爬取

​ 在浏览器中可以看到正常显示的页面数据,而使用requests得到的结果中并没有这些数据。这是因为requests获取的都是原始HTML文档,而浏览器中的页面是JavaScript处理数据后生成的结果,这些数据有多种来源:可能是通过Ajax加载的,可能是包含在HTML文档中的,也可能是经过JavaScript和特定算法计算后生成的。

对第一种来源,数据加载是一种异步加载方式,原始页面最初不会包含某些数据,当原始页面加载完后,会再向服务器请求某个接口获取数据,然后数据才会经过处理从而呈现在网页上,这其实是发送了一个Ajax请求。使得web开发做到前后端分离,减小服务器直接渲染页面带来的压力。

所以遇到这样的页面,直接利用requests等库来抓取原始HTML文档,是无法获取有效数据的。这时需要分析网页后台接口发送的Ajax请求。如果可用requests模拟Ajax请求,就可以成功抓取网页数据了。

5.1 什么是Ajax

AJAX 是一种在无需重新加载整个网页的情况下,能够更新部分网页的技术。它基于 HTML、CSS、JavaScript、XML 和 XMLHttpRequest 等标准。

首先,AJAX 的全称是 Asynchronous JavaScript and XML(异步的JavaScript和XML),它是一种用于创建更好更快以及交互性更强的Web应用程序的技术。使用 JavaScript 向服务器提出请求并处理响应而不阻塞用户的核心对象是 XMLHttpRequest。

其次,AJAX 的主要优点是可以在不刷新整个网页的情况下,对网页的某部分进行更新。这样可以提高网页的响应速度和用户体验,因为它避免了每次用户操作都需要等待整个页面重新加载的情况。

最后,AJAX 的应用场景非常广泛,包括但不限于表单提交、数据检索、实时消息更新等。通过使用 XMLHttpRequest 对象和回调函数,可以实现局部刷新,从而检测用户输入的用户名是否为"zhongfucheng"。

  1. 实例引入

微博主页https://m.weibo.cn/u/2830678474为例。

  1. 基本原理

    简单分为3步——发送请求、解析内容、渲染网页。

    • 发送请求

      JavaScript可以实现页面的各种交互功能,Ajax也不例外,它也是由JavaScript实现的,实现代码如下:

      var xmlhttp;
      if (window.XMLHttpRequest) {
          xmlhttp = new XMLHttpRequest();
      }else {//code for IE6、IE5
          xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");
      }
      xmlhttp.onreadystatechange=function () {
          if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {
              document.getElementById("myDiv").innerHTML = xmlhttp.responsetext;
          }
      }
      xmlhttp.open('POST','/ajax/', true);
      xmlhttp.send();
      

      这是JavaScript对Ajax最底层的实现,实际上是先建一个XMLHttpRequest对象xmlhttp,然后调用onreadystatechange属性设置监听,最后调用open和send方法向某个链接(服务器)发送请求。这里的请求发送由JavaScript完成,不是Python实现。由于设置了监听,所以当服务器返回响应时,onreadystatechange对应的方法便会被触发,然后在这方法里面解析响应内容即可。

    • 解析内容

    服务器返回响应后,onreadystatechange属性对应的方法就触发了,此时利用xmlhttp的responseText属性便可得到响应内容。这类似于Python中利用requests向服务器发起请求,然后得到响应的过程。返回内容可能是HTML,可能是JSON,接下来只需在方法中用JavaScript进一步处理即可。如果是JSON的话,可以进行解析和转化。

    • 渲染网页

    JavaScript有改变网页内容的能力,因此解析完响应内容后,就可以调用JavaScript来基于解析完的内容对网页进行下一步处理了。例如,通过document.getElementById().innerHTML操作,可以更改某个元素内的源代码,这样网页显示的内容就改变了。这种操作也被称为DOM操作,即对网页文档进行操作,如更改、删除等。

    上面“发送请求”部分,代码里的document.getElementById(”myDiv”).innerHTML=xmlhttp.responseText便是将ID为myDiv的节点内部的HTML代码更改为服务器返回的内容,这样myDiv元素内部便会呈现服务器返回的新数据,对应的网页内容看上去就更新了。

5.2 Ajax分析方法

  1. 分析案例

用Chrome浏览器打开微博链接https://m.weibo.cn/u/2830678474,然后在页面中单击鼠标右键,从弹出的快捷菜单中选择“检查”选项,此时便会弹出开发者工具,如图所示:

Screenshot 2024-03-22 at 22.10.05

Screenshot 2024-03-23 at 09.28.54

Ajax尤其特殊请求类型叫做xhr,可以发现一个名称以getIndex开头的请求,其Type就为xhr,意味着这就是一个Ajax请求。用鼠标单击这个请求,可以查看其详细信息。其中Request Headers中有一个信息为X-Rrequested-With:XMLHttpRequest,这就标记了此请求是Ajax请求,如图所示:

3

随后单击一下Preview, 就能看到响应内容,如图所示,内容是JSON格式的,这里Chrome为我们自动做了解析,单击左箭头即可展开和收起相应内容。

4

经过观察可以发现,这里的返回结果是我的个人信息,如昵称、简介、头像等,这也是渲染个人主页使用的数据。JavaScript接收到这些数据之后,再执行相应的渲染方法,整个页面就渲染出来。

5

也可以切换到Response选项卡,从中观察真实的返回数据,如图所示:

6

接下来,切回第一个请求,观察一下它的Response是什么,如图所示:

7

原始的链接https://m.weibo.cn/u/2830678474返回的结果,其代码只有不到50行,结构也非常简单,只是执行了一些JavaScript语句。所以说,微博页面呈现给我们的真实数据并不是最原始的页面返回的,而是执行JavaScript后再次向后台发送Ajax请求,浏览器拿到服务器返回到数据后进一步渲染得到的。

  1. 过滤请求

利用Chrome开发者工具的筛选功能能够筛选出所有Ajax请求。在请求的上方有一层筛选栏,直接单击XHR,之后下方显示的所有请求便都是Ajax请求了,如图所示:

8

接下来只需要用程序模拟这些Ajax请求,就可以轻松提取我们所需的信息。

5.3 Ajax分析与爬取实战

  1. 准备工作
    • 安装好Python3(最低为3.6版本),并成功运行Python3程序。
    • 了解Python HTTP请求库requests的基本用法。
    • 了解Ajax基础知识和分析Ajax的基本方法。
  2. 爬取目标

示例网站链接:https://spa1.scrape.center/,该示例网站的数据请求是通过Ajax完成的,页面的内容是通过JavaScript渲染出来的,页面如图所示。

9

单击每部电影进入对应的详情页,这些页面的结构也是完全一样的,如下图所示的是《迁徙的鸟》的详情页。

10

完成目标如下:

  • 分析页面数据的加载逻辑
  • 用requests实现Ajax数据的爬取
  • 将每部电影的数据分别保存到MongoDB数据库
  1. 初步探索

先尝试用requests直接提取页面,看看结果。实现代码如下:

import requests

url = '<https://spa1.scrape.center/>'
html = requests.get(url).text
print(html)

运行结果如下:
<!DOCTYPE html><html lang=en><head><meta charset=utf-8><meta http-equiv=X-UA-Compatible content="IE=edge">
<meta name=viewport content="width=device-width,initial-scale=1"><link rel=icon href=/favicon.ico><title>Scrape | Movie</title>
<link href=/css/chunk-700f70e1.1126d090.css rel=prefetch><link href=/css/chunk-d1db5eda.0ff76b36.css rel=prefetch>
<link href=/js/chunk-700f70e1.0548e2b4.js rel=prefetch><link href=/js/chunk-d1db5eda.b564504d.js rel=prefetch>
<link href=/css/app.ea9d802a.css rel=preload as=style><link href=/js/app.17b3aaa5.js rel=preload as=script>
<link href=/js/chunk-vendors.683ca77c.js rel=preload as=script><link href=/css/app.ea9d802a.css rel=stylesheet>
</head><body><noscript><strong>We're sorry but portal doesn't work properly without JavaScript enabled. Please enable it to continue.</strong>
</noscript><div id=app></div><script src=/js/chunk-vendors.683ca77c.js></script><script src=/js/app.17b3aaa5.js></script>
</body></html>

可以看到,爬取结果只有这么一点HTML内容,在HTML中只能看到源码引用的一些JavaScript和CSS文件,没有观察到任何电影数据信息。这说明浏览器执行了HTML中引用的JavaScript文件,通过调用一些数据加载和页面渲染方法,才最终呈现页面显示的结果。JavaScript在后台调用Ajax数据接口,得到数据之后,再对数据进行解析并渲染呈现出来。所以直接爬取Ajax接口,再获取数据就好了。

  1. 爬取列表页

首先分析列表页的Ajax接口逻辑,打开浏览器开发者工具,切换到Network面板,勾选Preserve Log并切换到XHR选项卡,接着重新刷新页面,再单击第3页、第4页的按钮,开发者工具下方页也监听到了几个Ajax请求,如图所示:

11

每次翻页也出现了对应的Ajax请求,可以单击查看其请求详情,观察请求URL、参数和响应内容是怎么样的,如图所示:

12

点开最后一个结果,观察到Ajax接口的请求UR为https://spa1.scrape.center/api/movie/?limit=10&offset=30。

观察多个Ajax接口的参数,可以总结一个规律:limit一直为10,正好对应每页10条数据;offset在依次变大,页数每加1,offset就加10,因此其代表页面的数据偏移量。

接着观察一下响应内容,切换到Preview选项卡,如下图所示:

13

可以看到,结果就是一些JSON数据,其中有一个results字段,是一个列表,列表中每一个元素都是一个字典。观察一下字典的内容,正好是对应电影数据的字段,如name、alias、cover、categories。爬取详情页和爬取列表页的代码如下:

import logging

import requests

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s : %(message)s')

LIMIT = 10

# 定义一个通用爬取方法
def scrape_api(url):
    logging.info('scraping %s...', url)
    try:
        response = requests.get(url)
        if response.status_code == 200:
            return response.json()
        logging.error('get invalid status code %s while scraping %s', response.status_code, url)

    except requests.RequestException:
        logging.error('error occurred while scraping %s', url, exc_info=True)

# 爬取列表页的方法
def scrape_index(page):
    url = f'<https://spa1.scrape.center/api/movie/?limit={LIMIT}&offset={LIMIT*(page-1)}>'
    return scrape_api(url)
  1. 爬取详情页

单击任意一部电影,如《肖申克的救赎》,进入其详情页,可以发现此时的页面URL已经变成了https://spa1.scrape.center/detail/3,页面也成功展示了《肖申克的救赎》详情页的信息,如下图所示:

14

另外,我们也可以观察到开发者工具中又出现了一个Ajax请求,其URL为 https://spa1.scrape.center/api/movie/3,通过Preview选项卡也能看到Ajax请求对应的响应信息,如图所示:

15

  进一步观察发现,列表页原本返回数据中就带有id这个字段,所以只要拿列表页结果中的id来构  造详情页的Ajax请求的URL就好了。定义一个详情页的爬取逻辑,代码如下:
# 详情页爬取方法
def scrape_detail(id):
    url = f'<https://spa1.scrape.center/api/movie/{id}>'
    return scrape_api(url)
最后,定义一个总调用方法,对以上方法串联调用,代码如下:
def main():
    for page in range(1, TOTAL_PAGE+1):
        index_data = scrape_index(page)
        for item in index_data.get('results'):
            id = item.get('id')
            detail_data = scrape_detail(id)
            logging.info('detail data %s', detail_data)
            
if __name__ == '__main__':
    main()
   运行结果如下(省略部分内容):

….

2024-03-23 13:28:19,493 - INFO : detail data {‘id’: 21, ‘name’: ‘黄金三镖客’, ‘alias’: ‘Il buono, il brutto, il cattivo.’, ‘cover’: ‘https://p0.meituan.net/movie/cd18ed2c5cda9e71e17e5e6ef61ced172912303.jpg@464w_644h_1e_1c’, ‘categories’: [‘西部’, ‘冒险’], ‘regions’: [‘意大利’, ‘西班牙’, ‘西德’], ‘actors’: [{‘name’: ‘克林特·伊斯特伍德’, ‘role’: ‘布兰迪 Blondie’, ‘image’: ‘https://p1.meituan.net/moviemachine/d1156c14dd899ada7c2b98bc373021c852875.jpg@128w_170h_1e_1c’}, {‘name’: ‘李·范·克里夫’, ‘role’: ‘桑坦萨 Sentenza’, ‘image’: ‘https://p0.meituan.net/movie/665eab6fdb7755138e0c8092f35ba39327553.jpg@128w_170h_1e_1c’}, {‘name’: ‘埃里·瓦拉赫’, ‘role’: ‘图科 Tuco’, ‘image’: ‘https://p1.meituan.net/movie/275042f2bbe012263b8deed1c96e611b42623.jpg@128w_170h_1e_1c’}, {‘name’: ‘路易吉·皮斯蒂利’, ‘role’: ‘Father Pablo Ramirez’, ‘image’: ‘https://p1.meituan.net/movie/3c91cd5186e89e927056adbc8a722f5014760.jpg@128w_170h_1e_1c’}, {‘name’: ‘Claudio Scarchilli’, ‘role’: ‘Bounty Hunter in Ghost Town’, ‘image’: ‘https://p1.meituan.net/mmdb/3a2061d771d98566d3e5fa5c08c5e0b33685.png@128w_170h_1e_1c’}, {‘name’: ‘John Bartha’, ‘role’: ‘Sheriff (as John Bartho)’, ‘image’: ‘https://p1.meituan.net/mmdb/3a2061d771d98566d3e5fa5c08c5e0b33685.png@128w_170h_1e_1c’}, {‘name’: ‘Livio Lorenzon’, ‘role’: ‘Baker’, ‘image’: ‘https://p1.meituan.net/mmdb/3a2061d771d98566d3e5fa5c08c5e0b33685.png@128w_170h_1e_1c’}, {‘name’: ‘贝尼托·斯特凡内利’, ‘role’: “Member of Angel Eyes’ Gang”, ‘image’: ‘https://p0.meituan.net/movie/69698bc0960b07e3acddd412f3b88ee821953.jpg@128w_170h_1e_1c’}, {‘name’: ‘Angelo Novi’, ‘role’: ‘Monk’, ‘image’: ‘https://p1.meituan.net/mmdb/3a2061d771d98566d3e5fa5c08c5e0b33685.png@128w_170h_1e_1c’}, {‘name’: ‘安东尼奥·卡萨斯’, ‘role’: ‘Stevens’, ‘image’: 'https://p1.meituan

……

至此,所有电影详情数据,都爬取到了。

  1. 保存数据

​ 请确保有一个可以正常连接和使用的MongoDB数据库,这里以本地localhost的MongoDB数据库为例来进行操作,其运行在27017端口上,无用户名和密码。

将数据导入MongodDB需要用到PyMongo这个库,配置如下:

import pymongo

# 定义常量
MONGO_CONNECTION_STRING = 'mongodb://localhost:27017'
MONGO_DB_NAME = 'movies'
MONGO_COLLECTION_NAME = 'movies'

client = pymongo.MongoClient(MONGO_CONNECTION_STRING)
db = client['movies']
collection = db['movies']

定义一个将数据保存到MongoDB数据库的方法,代码如下:

# 定义保存数据到MongoDB的方法
def save_data(data):
    collection.update_one({
        'name':data.get('name')
    },{
        '$set':data
    }, upsert=True)

接下来改写一下main方法,如下所示:

def main():
    for page in range(1, TOTAL_PAGE + 1):
        index_data = scrape_index(page)
        for item in index_data.get('results'):
            id = item.get('id')
            detail_data = scrape_detail(id)
            logging.info('detail data %s', detail_data)
            save_data(detail_data)
            logging.info('data saved successfully')

其实就是增加了save_data方法调用,并添加一些日志信息。重新运行,看看输出结果:

16

可以看到,数据就是以JSON格式存储的,一条数据对应一部电影信息,各种嵌套关系也是一目了然。

以上示例的一些库的详细操作可以在[小蜜蜂AI网站][https://zglg.work]体验。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1541079.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Docker(二):Docker常用命令

docker 查看docker支持的所有命令和参数。 ➜ ~ docker Management Commands:config Manage Docker configscontainer Manage containersimage Manage imagesnetwork Manage networksnode Manage Swarm nodesplugin Manage pluginssecret …

golang 对接第三方接口 RSA 做签(加密) 验签(解密)

一、过程 1.调用第三方接口前&#xff0c;一般需要按规则将参数按key1value1&key2value2 阿斯克码排序,sign参数不参与加密 2.将排序并连接好的参数字符串通过我方的私钥证书&#xff08;.pem&#xff09;进行加密得到加密串&#xff0c;当然加密得到的是 []byte 字节流&…

vue iframe实现父页面实时调用子页面方法和内容,已解决

父页面标签添加鼠标按下事件 父页方法中建立iframe通信 实时调用子页面方法 实时更改子页面文本内容

Chrome 114 带着侧边栏扩展来了

效果展示 manifest.json {"manifest_version": 3,"name": "ChatGPT学习","version": "0.0.2","description": "ChatGPT,GPT-4,Claude3,Midjourney,Stable Diffusion,AI,人工智能,AI","icons"…

C语言经典算法-9

文章目录 其他经典例题跳转链接46.稀疏矩阵47.多维矩阵转一维矩阵48.上三角、下三角、对称矩阵49.奇数魔方阵50.4N 魔方阵51.2(2N1) 魔方阵 其他经典例题跳转链接 C语言经典算法-1 1.汉若塔 2. 费式数列 3. 巴斯卡三角形 4. 三色棋 5. 老鼠走迷官&#xff08;一&#xff09;6.…

【go从入门到精通】for循环控制

作者简介&#xff1a; 高科&#xff0c;先后在 IBM PlatformComputing从事网格计算&#xff0c;淘米网&#xff0c;网易从事游戏服务器开发&#xff0c;拥有丰富的C&#xff0c;go等语言开发经验&#xff0c;mysql&#xff0c;mongo&#xff0c;redis等数据库&#xff0c;设计模…

ssm003在线医疗服务系统+jsp

在线医疗服务系统的设计与实现 摘 要 网络技术和计算机技术发展至今&#xff0c;已经拥有了深厚的理论基础&#xff0c;并在现实中进行了充分运用&#xff0c;尤其是基于计算机运行的软件更是受到各界的关注。加上现在人们已经步入信息时代&#xff0c;所以对于信息的宣传和管…

bevformer转模型经验(需要时序tranformer所有模型都可以参考)

先上bevformer的网络结构图 不难发现&#xff0c;他有两个输入。当前的环视图和历史bev。历史bev是通过历史环视图生成的。也就是说在生成bev特征提取模型这部分被使用了两次。在装模型时候&#xff0c;需要作以下工作&#xff1a; 1 bev特征提取模型单独提出来&#xff0c;转…

用Kimichat学习王庆法老师关于Sora的文章

目录 一 引言:二 提示词方面:三 与Kimi的聊天记录我:假如你是一名大模型方面的专家,提取一下这篇文章的核心观点,用三列表格的形式,https://mp.weixin.qq.com/s/Y-vmxmPu4_-tHaeP35hDJg我:上述文章的一、Spacetime Latent Patches 潜变量时空碎片, 建构视觉语言系统部分…

python处理Excel的方法之xlrd

python处理Excel常用到的模块是xlrd。使用xlrd可以非常方便的处理Excel文档&#xff0c;下面介绍一下基本用法 打开文件 import xlrd data xlrd.open_workbook("c:\\skills.xls") 获取一个工作表 table data.sheet_by_name(uskills) #也可以 table data.sheet_by_…

PTA-练习7

目录 实验8-2-1 找最小的字符串 实验8-2-2 找最长的字符串 实验8-2-8 字符串排序 实验8-2-10 IP地址转换 结构体 实验9-1 计算职工工资 实验9-2 时间换算 实验9-3 计算平均成绩 实验9-5 查找书籍 实验9-8 通讯录排序 实验9-9 有理数比较 实验11-1-1 英文单词排序 …

在 Windows 中安装配置并启动运行 Jenkins【图文详细教程】

安装 Jenkins 的系统要求&#xff1a; 最少 256MB 可用内存最少 1GB 可用磁盘空间JDK 8 / 11 /17&#xff08;Jenkins 是用 Java 写的&#xff0c;打包成 war 包&#xff09; 查看 JDK 的版本 Java JDK 在 Windows 中安装可以参考&#xff1a;https://www.yuque.com/u27599042/…

iscsi网络协议(连接硬件设备)

iscsi概念 iscsi是一种互联网协议&#xff0c;用于将存储设备&#xff08;如硬盘驱动器或磁带驱动器&#xff09;通过网络连接到计算机。它是一种存储区域网络&#xff08;SAN&#xff09;技术&#xff0c;允许服务器通过网络连接到存储设备&#xff0c;就像它们是本地设备一样…

【C++】1596. 火柴棒三角形问题

问题&#xff1a;1596. 火柴棒三角形问题 类型&#xff1a;基本运算、整数运算 题目描述&#xff1a; 如下图所示&#xff0c;摆 1 个火柴棒三角形需要 3 根火柴&#xff0c;那么摆 2 个火柴棒三角形就需要 6 根火柴&#xff0c;请问摆 n 个火柴棒三角形需要多少根火柴&#…

由浅入深一步步了解什么是哈希(概念向)

文章目录 什么是哈希哈希函数直接定址法除留余数法 哈希冲突闭散列线性探测法二次探测法负载因子和闭散列的扩容 开散列开散列的扩容 非整形关键码 什么是哈希 我们来重新认识一下数据查找的过程&#xff1a; 在顺序结构以及平衡树中&#xff0c;记录的关键码与其存储位置之间…

基因在各个细胞系表达情况

从CCLE下载数据得到基因在每个细胞系中的 现在从DepMap: The Cancer Dependency Map Project at Broad Institute 需要先选择Custom Downloads 就可以下载数据进行处理了&#xff1a; rm(list ls()) library(tidyverse) library(ggpubr) rt <- data.table::fread("…

LeetCode每日一题——统计桌面上的不同数字

统计桌面上的不同数字OJ链接&#xff1a;2549. 统计桌面上的不同数字 - 力扣&#xff08;LeetCode&#xff09; 题目&#xff1a; 思路&#xff1a; 这是一个很简单的数学问题&#xff1a; 当n 5时&#xff0c;因为n % 4 1&#xff0c;所以下一天4一定会被放上桌面 当n 4…

SpringBoot 3整合Elasticsearch 8

这里写自定义目录标题 版本说明spring boot POM依赖application.yml配置新建模型映射Repository简单测试完整项目文件目录结构windows下elasticsearch安装配置 版本说明 官网说明 本文使用最新的版本 springboot: 3.2.3 spring-data elasticsearch: 5.2.3 elasticsearch: 8.1…

Unity Mesh简化为Cube mesh

Mesh简化为Cube mesh &#x1f373;食用&#x1f959;子物体独立生成CubeMesh&#x1f96a;合并成一个CubeMesh&#x1f32d;Demo &#x1f373;食用 下载并导入插件&#x1f448;即可在代码中调用。 &#x1f959;子物体独立生成CubeMesh gameObject.ToCubeMesh_Invidual()…

计算机基础系列 —— 汇编语言

Same hardware can run many different programs(Software) 文中提到的所有实现都可以参考&#xff1a;nand2tetris_sol&#xff0c;但是最好还是自己学习课程实现一遍&#xff0c;理解更深刻。 我们在之前的文章里&#xff0c;构建了 Register、RAM 和 ALU&#xff0c;使得我…