MNN createSession 之创建流水线后端(四)

news2025/1/16 7:46:47

在这里插入图片描述

系列文章目录


MNN createFromBuffer(一)
MNN createRuntime(二)
MNN createSession 之 Schedule(三)
MNN createSession 之创建流水线后端(四)
MNN Session::resize 之流水线编码(五)
MNN Session 创建执行器(六)


文章目录

  • 系列文章目录
  • 1、createSession
    • 1.1 createMultiPathSession
    • 1.1.1 Session 类 ModeGroup
    • 1.1.2 Session::Session
    • 1.1.2.1 _createPipelineBackend
    • 1.1.2.1.1 VulkanRuntime::onCreate
    • 1.1.2.1.1.1 VulkanBackend::VulkanBackend
    • 1.1.2.1.2 CPURuntime::onCreate
    • 1.1.2.1.2.1 CPUBackend::CPUBackend
    • 1.1.2.2 Pipeline 类 TuningAttr、UnitInfo
    • 1.1.2.3 Pipeline::Pipeline
    • 1.1.2.3.1 GeometryComputer::Context


1、createSession

在这里插入图片描述

    依据 ScheduleConfig 和 RuntimeInfo 创建会话。

// source/core/Interpreter.cpp
Session* Interpreter::createSession(const ScheduleConfig& config, const RuntimeInfo& runtime) {
    return createMultiPathSession({config}, runtime);
}

1.1 createMultiPathSession

// source/core/Interpreter.cpp
Session* Interpreter::createMultiPathSession(const std::vector<ScheduleConfig>& configs, const RuntimeInfo& runtime) {
    // ...
    auto newSession =
        std::unique_ptr<Session>(new Session(std::move(info), mNet->modes, std::move(rt)));
    if (!newSession->valid()) {
        MNN_PRINT("Invalide Session!!\n");
        return nullptr;
    }
    auto result = newSession.get();
    auto validForResize = info.validForResize;
    if (validForResize && mNet->modes.inputMode == Session_Input_Inside && mNet->modes.resizeMode == Session_Resize_Direct) {
        result->resize();
    }

    if ((!mNet->cacheFile.empty()) && (!valid) && mNet->modes.backendMode == Session_Backend_Fix) {
        // Try to save extra cache
        auto buffer = result->getCache();
        if (buffer.first != nullptr && buffer.second > 0) {
            MNN_PRINT("Write cache to %s, size = %zu\n", mNet->cacheFile.c_str(), buffer.second);
            writeCacheFile(mNet, buffer);
            mNet->lastCacheSize = buffer.second;
            // Write Cache
            cacheMode = cacheMode | 2;
        }
    }
    // Reset cache
    result->loadCache(nullptr, 0);

    mNet->sessions.emplace_back(std::move(newSession));

#ifdef MNN_INTERNAL_ENABLED
    int precision = BackendConfig::Precision_Normal;
    if (nullptr != configs[0].backendConfig) {
        precision = configs[0].backendConfig->precision;
    }
    int mode = configs[0].mode;
    mNet->sessionInfo.insert(std::make_pair(result, std::make_tuple(precision, mode)));
    if (shouldLog(FREQ_HIGH)) {
        std::map<std::string, std::string> metrics = mNet->basicLogginData;
        metrics.emplace("UUID", mNet->uuid);
        metrics.emplace("Time", std::to_string((float)_timer.durationInUs() / 1024.0f));
        metrics.emplace("Backend", std::to_string(configs[0].type));
        metrics.emplace("Precision", std::to_string(precision));
        metrics.emplace("Mode", std::to_string(mode));
        metrics.emplace("Cache", std::to_string(cacheMode));
        metrics.emplace("CacheSize", std::to_string((float)(mNet->lastCacheSize / 1024.0f)));
        metrics.emplace("ModelSize", std::to_string ((float)mNet->buffer.size() / 1024.0f / 1024.0f));
        metrics.emplace("Usage", std::to_string((int) mNet->net->usage()));
        metrics.emplace("API", "Interpreter::createMultiPathSession");
        logAsync(metrics);
    }
#endif // MNN_INTERNAL_ENABLED

    return result;
}

1.1.1 Session 类 ModeGroup

// source/core/Session.hpp
class MNN_PUBLIC Session {
public:
    struct ModeGroup {
        Interpreter::SessionMode callBackMode = Interpreter::Session_Debug;
        Interpreter::SessionMode inputMode = Interpreter::Session_Input_Inside;
        Interpreter::SessionMode outputMode = Interpreter::Session_Output_Inside;
        Interpreter::SessionMode backendMode = Interpreter::Session_Backend_Fix;
        Interpreter::SessionMode resizeMode = Interpreter::Session_Resize_Direct;
        Interpreter::SessionMode memoryUsageMode = Interpreter::Session_Memory_Collect;
        Interpreter::SessionMode codegenMode = Interpreter::Session_Codegen_Disable;
        int memoryAllocatorType = 0;
        int maxTuningNumber = MNN_DEFAULT_TUNING_NUMBER;
    };
    Session(Schedule::ScheduleInfo&& info, const ModeGroup& mode,
            RuntimeInfo&& runtime);
    ~Session();

    Session* clone(RuntimeInfo&& runtime, std::shared_ptr<Schedule::ScheduleInfo> sharedConst);
public:
    /**
     * @brief infer.
     * @return result code.
     */
    ErrorCode run() const;
    /**
     * @brief infer with callbacks and sync option.
     * @param enterCallback callback before each op.
     * @param exitCallback  callback after each op.
     * @param sync          wait until all ops done before return or not.
     * @return result code.
     */
    ErrorCode runWithCallBack(const TensorCallBackWithInfo& enterCallback, const TensorCallBackWithInfo& exitCallback,
                              bool sync = false) const;

    bool getInfo(Interpreter::SessionInfoCode code, void* ptr) const;

public:
    /**
     * @brief resize tensors and buffers responding to input changes.
     * @return result code.
     */
    ErrorCode resize();

    /**
     * @brief set if needs resize.
     * @param flag  needs resize or not.
     */
    void setNeedResize(bool flag = true) {
        mNeedResize = flag;
    }

    void setNeedMalloc(bool flag = true) {
        mNeedMalloc = flag;
    }

    Runtime* getCPURuntime() {
        return mRuntime.second.get();
    }

public:
    /**
     * @brief get backend that create the tensor.
     * @param tensor    given tensor.
     * @return backend that create the tensor, NULL if the tensor is created by default backend (CPU backend).
     */
    const Backend* getBackEnd(const Tensor* tensor) const;

    /**
     * @brief get input tensor for given op name.
     * @param name given op name. if NULL, return first input tensor.
     * @return input tensor if found, NULL otherwise.
     */
    Tensor* getInput(const char* name) const;

    /**
     * @brief get output tensor for given op name.
     * @param name given op name. if NULL, return first output tensor.
     * @return output tensor if found, NULL otherwise.
     */
    Tensor* getOutput(const char* name) const;

    /**
     * @brief get output tensors map.
     * @return get output tensors map.
     */
    const std::map<std::string, Tensor*>& getOutputAll() const;
    const std::map<std::string, Tensor*>& getInputAll() const;

    /**
     * @brief check session is valid or not.
     * @return session is valid or not.
     */
    inline bool valid() const {
        return mValid;
    }

    /**
     * @brief update the session's const value to origin model's const blob.
     * @return errorcode
     */
    ErrorCode updateToModel(Net* net) const;

    void waitAsyncResize();
    bool hasAsyncWork();
    bool loadCache(const void* buffer, size_t size);
    std::pair<const void*, size_t> getCache();

    Tensor* getTensor(int index) const;
    Schedule::PipelineInfo& getPipelineInfo(int index) const;
protected:
    const std::vector<std::shared_ptr<Pipeline>>& getPipelines() const {
        return this->mPipelines;
    }

private:
    void _clearCache();
    void _setUpTensorInfo(const Schedule::ScheduleInfo& info);

private:
    RuntimeInfo mRuntime;
    std::vector<std::shared_ptr<Pipeline>> mPipelines;
    bool mNeedResize = true;
    bool mValid      = true;
    bool mNeedMalloc = true;
    Interpreter::SessionMode mCallBackMode;
    Interpreter::SessionMode mMemoryUsageMode;
    Interpreter::SessionMode mCodegenMode;
    Schedule::ScheduleInfo mInfo;
    ModeGroup mMode;
};

1.1.2 Session::Session

// source/core/Session.cpp
Session::Session(Schedule::ScheduleInfo&& info, const ModeGroup& mode, RuntimeInfo&& runtime) {
    mMode = mode;
    mRuntime = std::move(runtime);
    if (info.pipelineInfo.empty()) {
        mValid = false;
        return;
    }
    mInfo = std::move(info);
    for (auto& iter : mInfo.pipelineInfo) {
        _createPipelineBackend(iter, mRuntime);
        Pipeline::TuningAttr attr;
        attr.maxTuningNumber = mode.maxTuningNumber;
        attr.autoSetOpType = mode.backendMode == Interpreter::Session_Backend_Auto;
        auto rt    = mRuntime.first.find(iter.first.info.type)->second.get();
        auto cpuRuntime = mRuntime.second;
        std::shared_ptr<Pipeline> newPipeline(new Pipeline(std::move(iter), mode.inputMode == Interpreter::Session_Input_Inside, mode.outputMode == Interpreter::Session_Output_User, attr, rt, cpuRuntime.get()));
        mPipelines.emplace_back(std::move(newPipeline));
    }
    mCallBackMode = mode.callBackMode;
    mMemoryUsageMode = mode.memoryUsageMode;
    mCodegenMode = mode.codegenMode;
}

1.1.2.1 _createPipelineBackend

    创建流水线后端。BackendCache

// source/core/Session.cpp
// typedef std::pair<BackendCache, std::vector<OpCacheInfo>> PipelineInfo;
//
//   struct BackendCache {
//      Backend::Info info;
//      BackendConfig config;
//      std::pair<std::shared_ptr<Backend>, std::shared_ptr<Backend>> cache;
//      bool needComputeShape = true;
//      bool needComputeGeometry = true;
//      bool reportError = true;
//      std::map<Tensor*, TENSORCACHE> inputTensorCopyCache;
//  };
//
// typedef std::pair< std::map<MNNForwardType, std::shared_ptr<Runtime>>,  \
//						std::shared_ptr<Runtime>> RuntimeInfo;
//
static void _createPipelineBackend(Schedule::PipelineInfo& iter, RuntimeInfo& runtime) {
	// iter.first 类型为 struct BackendCache 
    if (iter.first.cache.first != nullptr) {
        return;
    }
    // runtime.first 类型为 std::map<MNNForwardType, std::shared_ptr<Runtime>>
    // 根据 MNNForwardType(MNN_FORWARD_VULKAN) 获取对应的 Runtime(VulkanRuntime)
    auto rt    = runtime.first.find(iter.first.info.type)->second.get();
    // runtime.second 为默认 Runtime(CPURuntime)
    auto cpuRuntime = runtime.second;
    bool specialUsage = false;
    if (iter.first.info.user != nullptr) {
        specialUsage = iter.first.info.user->flags > 0;
    }
    // 此处运行 VulkanRuntime::onCreate,创建对应的 Backend(VulkanBackend)
    // iter.first.cache 类型为 std::pair<std::shared_ptr<Backend>, std::shared_ptr<Backend>>
    iter.first.cache.first.reset(rt->onCreate(iter.first.info.user));
    std::shared_ptr<Backend> second;
    if (iter.first.cache.first->type() == MNN_FORWARD_CPU && (!specialUsage)) {
        iter.first.cache.second = iter.first.cache.first;
    } else {
        // Const Backend shouldn't be used as default backend
        // The session may be schedule multi-thread but const backend is the same
        // We need create a new backend to do size compute / not support op compute
        // 创建默认的 Backend(CPUBackend)
        BackendConfig defaultConfig;
        defaultConfig.flags = 4;
        iter.first.cache.second.reset(cpuRuntime->onCreate(&defaultConfig));
    }
}

1.1.2.1.1 VulkanRuntime::onCreate

// source/backend/vulkan/runtime/VulkanRuntime.cpp
Backend* VulkanRuntime::onCreate(const BackendConfig* config) const {
    // FIXME: Use config
    return new VulkanBackend(this, mInfo);
}

1.1.2.1.1.1 VulkanBackend::VulkanBackend

// source/backend/vulkan/image/backend/VulkanBackend.cpp
VulkanBackend::VulkanBackend(const VulkanRuntime* runtime, const Backend::Info& info) : Backend(MNN_FORWARD_VULKAN) {
    mRuntime = runtime;
    mDirect = Backend::Info::INDIRECT != info.mode;
    mDynamicMemoryPool.reset(new VulkanMemoryPool(runtime->mMemoryPool.get()));

    auto& dev              = device();
    mFence                 = std::make_shared<VulkanFence>(dev);
    if (!mDirect) {
        mCmdBuffer.reset(runtime->mCmdPool->allocBuffer());
    }
    mInitBuffer.reset(runtime->mCmdPool->allocBuffer());
}

1.1.2.1.2 CPURuntime::onCreate

// source/backend/cpu/CPUBackend.cpp
Backend* CPURuntime::onCreate(const BackendConfig* config) const {
    auto precision = mPrecision;
    auto memory = mMemory;
    size_t flags = mFlags;
    if (nullptr != config) {
        precision = config->precision;
        flags = config->flags;
        memory = config->memory;
    }
#ifdef LOG_VERBOSE
    MNN_PRINT("cpu backend was created by runtime:%p\n", this);
#endif

#ifdef MNN_USE_ARMV82
    auto core = MNNGetCoreFunctions();
    if (core->supportFp16arith && precision == BackendConfig::Precision_Low) {
        return new Arm82Backend(this, memory);
    }
#endif
#ifdef MNN_SUPPORT_BF16
    if (precision == BackendConfig::Precision_Low_BF16 && BF16Functions::get()) {
        return new BF16Backend(this);
    }
#endif
    if (flags == MNN_CPU_USE_DEFAULT_BACKEND) {
        return new CPUBackend(this, precision, memory, MNN_FORWARD_CPU, 0);
    }
#ifdef MNN_USE_SSE
    if (AVX2Backend::isValid()) {
        return new AVX2Backend(this, memory, flags);
    }
#endif

    return new CPUBackend(this, precision, memory, MNN_FORWARD_CPU, flags);
}

1.1.2.1.2.1 CPUBackend::CPUBackend

// source/backend/cpu/CPUBackend.cpp
CPUBackend::CPUBackend(const CPURuntime* runtime, BackendConfig::PrecisionMode precision, BackendConfig::MemoryMode memory, MNNForwardType type, size_t flags) : Backend(type) {
#ifdef LOG_VERBOSE
    MNN_PRINT("cpu backend create\n");
#endif
    mMemory = memory;
    mRuntime = const_cast<CPURuntime*>(runtime);
    std::shared_ptr<BufferAllocator::Allocator> defaultAlloc(BufferAllocator::Allocator::createRecurse(runtime->mStaticAllocator.get()));
    if (mRuntime->getAllocatorType() == Runtime::Allocator_Defer) {
        mDynamicAllocator.reset(new DeferBufferAllocator(defaultAlloc));
    } else {
        mDynamicAllocator.reset(new EagerBufferAllocator(defaultAlloc));
    }
    mStaticAllocator = runtime->mStaticAllocator;
    mPrecisionMode = precision;
    mCoreFunctions = MNNGetCoreFunctions();
    mInt8CoreFunctions = MNNGetInt8CoreFunctions();
    mCache = new CPUResizeCache;
}

1.1.2.2 Pipeline 类 TuningAttr、UnitInfo

// source/core/Pipeline.hpp
/** pipeline. one session may contains multiple pipeline, and one pipeline may contains more than one unit. */
class Pipeline : public NonCopyable {
public:
    struct TuningAttr {
        bool autoSetOpType;
        int maxTuningNumber;
    };
    Pipeline(Schedule::PipelineInfo&& info, bool allocInput, bool outputStatic, const TuningAttr& tune, const Runtime* rt, const Runtime* cpuRt);
    ~Pipeline();
    class UnitInfo : public OperatorInfo {
    public:
        UnitInfo()          = default;
        virtual ~UnitInfo() = default;
        void setUp(const Command& cmd, int index, const Op* originOp, int totalIndex);
    };
public:
    /** encode :
       1. compute shape for every op's inputs and outputs;
       2. geometry transform;
       3. copy op, inputs and outputs tensor info to mBuffer
       static_model:  3; dynamic_model: 1,2,3
    */
    ErrorCode encode(bool supportDebug = false, bool permitCodegen = false);
    /** allocMemory: create Execution and alloc memory for every op */
    ErrorCode allocMemory(bool firstMalloc, bool permitCodegen);
    /** execute this pipline */
    ErrorCode execute();
    ErrorCode executeCallBack(const TensorCallBackWithInfo& before, const TensorCallBackWithInfo& after);
    Schedule::PipelineInfo& getPipelineInfo() {
        return mInfo;
    }

    float flops() const {
        return mFlops;
    }
    friend class Session;
    MNNForwardType getMainForwardType() const  {
        return mInfo.first.cache.first->type();
    }
private:
    void _copyInputs();
    void _pushTuningTask(std::vector<Schedule::OpCacheInfo>&& initInfos);
    void _recycleDynamicMemory(Command* command);
    Schedule::PipelineInfo mInfo;
    bool mAllocInput;
    bool mOutputStatic;
    TuningAttr mTuneAttr;
    float mFlops = 0.0f;
    bool mIsQuantModel = false;

    // For gpu or other backend
    std::map<Tensor*, std::shared_ptr<Tensor>> mCacheConstTensors;
    std::map<Tensor*, std::shared_ptr<Tensor>> mShapeFixConstCache;
#ifndef MNN_BUILD_MINI
    GeometryComputer::Context mContext;
    Runtime::CompilerType mUseGeometry;
#endif
    const Runtime* mRuntime;
    const Runtime* mCpuRuntime;
};

1.1.2.3 Pipeline::Pipeline

OpCacheInfo

// source/core/Pipeline.cpp
// typedef std::pair<BackendCache, std::vector<OpCacheInfo>> PipelineInfo;
//
//    /** pipeline info */
//    struct OpCacheInfo {
//        /** op */
//        const Op* op;
//        /** input tensors */
//        std::vector<Tensor*> inputs;
//        /** output tensors */
//        std::vector<Tensor*> outputs;
//        /** schedule type*/
//        Schedule::Type type = Schedule::Type::SEPARATE;
//
//        /**Command buffer for cache*/
//        CommandBuffer cacheBuffer;
//
//        /**Command buffer for execute*/
//        CommandBuffer executeBuffer;
//        
//        std::map<const Op*, std::shared_ptr<Execution>> executionCache;
//    };
//
Pipeline::Pipeline(Schedule::PipelineInfo&& info, bool allocInput, bool outputStatic, const TuningAttr& tune, const Runtime* rt, const Runtime* cpuRt)
#ifndef MNN_BUILD_MINI
	// mContext 类型为 GeometryComputer::Context
    : mContext(info.first.cache.second, info.first.cache.first->type(), info.first.info.user ? info.first.info.user->precision :  BackendConfig::Precision_Normal), mUseGeometry(rt->onGetCompilerType()) {
#else
{
#endif
    rt->onCheckInfo(info.first.info);
    mRuntime = rt;
    mCpuRuntime = cpuRt;
    mTuneAttr = tune;
    mAllocInput    = allocInput;
    mOutputStatic  = outputStatic;
    mInfo          = std::move(info);
    mIsQuantModel = false;
    // mInfo.second 类型为 std::vector<OpCacheInfo>
    for (auto& iter : mInfo.second) {
        for (auto t : iter.outputs) {
            if (TensorUtils::getDescribe(t)->quantAttr.get() != nullptr) {
            	// 是否是量化模型
                mIsQuantModel = true;
                break;
            }
        }
        for (auto t : iter.inputs) {
            if (TensorUtils::getDescribe(t)->quantAttr.get() != nullptr) {
                mIsQuantModel = true;
                break;
            }
        }
        if (mIsQuantModel) {
            break;
        }
    }

}

1.1.2.3.1 GeometryComputer::Context

class GeometryComputer {
public:
    virtual ~GeometryComputer() {
        // Do nothing
    }
    class MNN_PUBLIC Context {
    public:
        Context(std::shared_ptr<Backend> allocBackend, MNNForwardType type = MNN_FORWARD_CPU, BackendConfig::PrecisionMode precision = BackendConfig::Precision_Normal);
        ~Context();

        void clear();
        void setBackend(Backend* backend);
        void getRasterCacheCreateRecursive(Tensor* src, CommandBuffer& cmd);

        // If has cache, return. Otherwise create cache
        const std::vector<std::shared_ptr<Tensor>>& searchConst(const Op* op);
        std::shared_ptr<Tensor> allocConst(const Op* key, const std::vector<int>& shape, halide_type_t type,
                                           Tensor::DimensionType dimType = Tensor::TENSORFLOW);
        bool allocTensor(Tensor* tenosr);
        inline MNNForwardType forwardType() const {
            return mForwardType;
        }
        inline BackendConfig::PrecisionMode precisionType() const {
            return mPrecision;
        }
        void pushCache(const CommandBuffer& buffer);
        std::shared_ptr<BufferStorage> mRasterOp;
    private:
        void getRasterCacheCreate(Tensor* src, CommandBuffer& cmd);
        std::map<const Op*, std::vector<std::shared_ptr<Tensor>>> mConstTensors;
        std::vector<std::shared_ptr<Tensor>> mEmpty;
        std::vector<std::shared_ptr<Tensor>> mTempConstTensors;
        std::shared_ptr<Backend> mBackend;
        MNNForwardType mForwardType;
        BackendConfig::PrecisionMode mPrecision;
        std::vector<SharedPtr<Command>> mRasterCmdCache;
    };
    static void init();
    MNN_PUBLIC static const GeometryComputer* search(int opType, Runtime::CompilerType compType);
    static void registerGeometryComputer(std::shared_ptr<GeometryComputer> comp, std::vector<int> type, Runtime::CompilerType compType = Runtime::Compiler_Geometry);

    virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
                           Context& context, CommandBuffer& cmd) const = 0;
    virtual bool onRecompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
                             Context& context, CommandBuffer& cmd) const {
        return false;
    }
};

   

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1530504.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【刷题】滑动窗口入门

送给大家一句话&#xff1a; 那脑袋里的智慧&#xff0c;就像打火石里的火花一样&#xff0c;不去打它是不肯出来的。——莎士比亚 滑动窗口入门 认识滑动窗口Leetcode 209. 长度最小的子数组题目描述算法思路 Leetcode 3. 无重复字符的最长子串题目描述算法思路 Leetcode 1004…

Invicti v24.3.0 for Windows - Web 应用程序安全测试

Invicti v24.3.0 for Windows - Web 应用程序安全测试 Invicti Standard 12 Mar 2024 v24.3.0 请访问原文链接&#xff1a;https://sysin.org/blog/invicti/&#xff0c;查看最新版。原创作品&#xff0c;转载请保留出处。 作者主页&#xff1a;sysin.org Invicti 是一种自动…

什么是 JVM 双亲委派机制?

什么是 JVM 双亲委派机制&#xff1f; 题目 什么是 JVM 双亲委派机制&#xff1f; 推荐解析 通俗的说&#xff0c;双亲委派模型&#xff0c;就是加载类的时候&#xff0c;先请求其父类加载器去加载&#xff0c;如果父类加载器无法加载类&#xff0c;再尝试自己去加载类。如…

npm install不成功

解决办法&#xff1a; $env:NODE_OPTIONS"--openssl-legacy-provider" npm run dev

HarmonyOS应用开发实战 - Api9 拍照、拍视频、选择图片、选择视频、选择文件工具类

鸿蒙开发过程中&#xff0c;经常会进行系统调用&#xff0c;拍照、拍视频、选择图库图片、选择图库视频、选择文件。今天就给大家分享一个工具类。 1.话不多说&#xff0c;先展示样式 2.设计思路 根据官方提供的指南开发工具类&#xff0c;基础的拍照、拍视频、图库选照片、选…

【mybatis】objectwrapper解读

简介 在 MyBatis 中&#xff0c;ObjectWrapper 是一个关键的接口&#xff0c;用于详细封装了对象的属性信息。ObjectWrapper 主要用于内部操作&#xff0c;它抽象了对象的属性操作&#xff0c;使得 MyBatis 能够统一处理原生类型、Bean 对象以及 Map 集合等。 类图展示 主要功…

1、初识JVM

一、JVM是什么&#xff1f; JVM的英文全称是 Java Virtual Machine&#xff0c;其中文译名为Java虚拟机。它在本质上就是是一个运行在计算机上的程序&#xff0c;他的职责是运行Java字节码文件。 JVM执行流程如下 二、JVM有哪些功能&#xff1f; 2.1 解释和运行 对字节码文…

vue:功能【xlsx】动态行内合并

场景&#xff1a;纯前端导出excel数据&#xff0c;涉及到列合并、行合并。 注&#xff09;当前数据表头固定&#xff0c;行内数据不固定。以第一列WM为判断条件&#xff0c;相同名字的那几行数据合并单元格。合并的那几行数据&#xff0c;后面的列按需求进行合并。 注&#x…

SpringBoot + Vue项目(显示+删除+回显家居)

文章目录 1.显示家居信息1.com/sun/furn/controller/FurnController.java 添加方法2.postman测试3.src/views/HomeView.vue 修改el-table 并清空数据池tableData4.src/views/HomeView.vue 发送请求并取出数据1.方法池2.created阶段调用list方法3.结果展示 5.src/utils/request.…

【python】flask服务端响应与重定向处理

✨✨ 欢迎大家来到景天科技苑✨✨ &#x1f388;&#x1f388; 养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; &#x1f3c6; 作者简介&#xff1a;景天科技苑 &#x1f3c6;《头衔》&#xff1a;大厂架构师&#xff0c;华为云开发者社区专家博主&#xff0c;…

C语言经典算法-8

文章目录 其他经典例题跳转链接41.基数排序法42.循序搜寻法&#xff08;使用卫兵&#xff09;43.二分搜寻法&#xff08;搜寻原则的代表&#xff09;44.插补搜寻法45.费氏搜寻法 其他经典例题跳转链接 C语言经典算法-1 1.汉若塔 2. 费式数列 3. 巴斯卡三角形 4. 三色棋 5. 老鼠…

01 JDBC介绍

文章目录 JDBC本质版本使用核心APIDriverDriverManager驱动注册连接对象获取 Connection获取执行对象事务管理 Statement概述 ResultSet概述 JDBC本质 官方&#xff08;sun公司&#xff09;定义的一套操作所有关系型数据库的规则&#xff0c;即接口各个数据库厂商去实现这套接…

爬虫逆向实战(37)-某保险超市(AES,SHA256)

一、数据接口分析 主页地址&#xff1a;某保险超市 1、抓包 通过抓包可以发现数据接口是/tacpc/tiananapp/marketing_product_commodity/commodityList 2、判断是否有加密参数 请求参数是否加密&#xff1f; 通过查看“载荷”模块可以发现&#xff0c;有一个jsonKey加密参…

Servlet使用

文章目录 简介一、快速入门二、Servlet 执行流程三、Servlet 生命周期四、Servlet 方法介绍五、Servlet 体系结构六、Servlet urlPattern配置七、XML 配置方式编写 Servlet 简介 一、快速入门 <dependencies><dependency><groupId>javax.servlet</groupId…

绝地求生:[更新周报] 3/20 不停机更新:商城无上新、23号七周年HOT TIME!

大家好&#xff0c;我是闲游盒。本周三3月20号&#xff0c;绝地求生不会有停机时间&#xff0c;大家可以随便玩~ ▲本周可选地图池 亚服/东南亚服&#xff1a;艾伦格、米拉玛、泰戈、荣都、卡拉金&#xff1b; 日服/韩服KAKAO服&#xff1a;艾伦格、泰戈、萨诺、荣都、卡拉金&a…

数据分析-Pandas序列滑动窗口配置参数

数据分析-Pandas序列滑动窗口配置参数 数据分析和处理中&#xff0c;难免会遇到各种数据&#xff0c;那么数据呈现怎样的规律呢&#xff1f;不管金融数据&#xff0c;风控数据&#xff0c;营销数据等等&#xff0c;莫不如此。如何通过图示展示数据的规律&#xff1f; 数据表&…

【保姆级】VsCode 安装GitHub Copilot实操教程

0. 前言 GitHub Copilot&#xff0c;俗称“副驾驶”&#xff0c;是GitHub携手OpenAI共同打造的一款革命性的人工智能代码辅助工具。通过将其插件化集成至编辑器&#xff08;如VS Code&#xff09;&#xff0c;Copilot能够为用户提供强大的代码自动补全功能&#xff0c;并根据用…

图神经网络实战(5)——常用图数据集

图神经网络实战&#xff08;5&#xff09;——常用图数据集 0. 前言0. 图数据集介绍2. Cora 数据集3. Facebook Page-Page 数据集小结系列链接 0. 前言 图数据集往往比单纯的连接集合更丰富&#xff0c;节点和边也可以具有表示分数、颜色、单词等的特征。在输入数据中包含这些…

get_local_ip.bat:快速获取IPv4地址

批处理脚本&#xff0c;用于在Windows命令提示符下获取本地计算机的IPv4地址。 echo off ipconfig | findstr IPv4 pause - echo off&#xff1a;这会关闭命令提示符窗口中的命令回显&#xff0c;使得在运行脚本时不会显示每条命令的执行结果。 - ipconfig&#xff1a;这是一…

IDEA 配置阿里规范检测

IDEA中安装插件 配置代码风格检查规范 使用代码风格检测 在代码类中&#xff0c;右键 然后会给出一些不符合规范的修改建议&#xff1a; 保存代码时自动格式化代码 安装插件&#xff1a; 配置插件&#xff1a;