【刷题】滑动窗口入门

news2025/1/16 3:57:29

在这里插入图片描述
送给大家一句话:

那脑袋里的智慧,就像打火石里的火花一样,不去打它是不肯出来的。——莎士比亚

滑动窗口入门

  • 认识滑动窗口
  • Leetcode 209. 长度最小的子数组
    • 题目描述
    • 算法思路
  • Leetcode 3. 无重复字符的最长子串
    • 题目描述
    • 算法思路
  • Leetcode 1004. 最大连续1的个数 III
    • 题目描述
    • 算法思路
  • 总结
  • 送给大家一句话:
  • Thanks♪(・ω・)ノ谢谢阅读!!!
  • 下一篇文章见

今天我学习了滑动窗口的算法思路,接下来请与我一起看看吧!!!

认识滑动窗口

滑动窗口问题可以说是一种特殊的双指针问题,通常用于解决以下类型的问题:

  1. 连续子数组或子字符串问题:例如,找出一个数组中连续元素和最大或最小的子数组,或者在字符串中找到一个包含特定字符的最短子字符串。
  2. 固定窗口大小问题:当窗口大小固定时,我们可以通过移动窗口来遍历整个数组或字符串,并记录所需的统计信息。
  3. 可变窗口大小问题:在某些情况下,窗口的大小可能会根据特定条件而变化。这需要我们在遍历过程中动态地调整窗口的大小。

滑动窗口算法的基本思想是使用双指针(有时也可能使用更多指针)来表示窗口的边界。在每一步中,我们可以根据特定条件来移动窗口的边界,并更新所需的统计信息。

看这些定义是真无法想象出来哦怎么个滑动窗口的,下面我们一起来做题吧:

Leetcode 209. 长度最小的子数组

题目描述

在这里插入图片描述
看这个题目还是很好理解的,只需要我们找到和大于target的连续子数组,我们来看第一个样例target = 7, nums = [2,3,1,2,4,3] 显然4,3是最小的子数组。接下来分析一下算法思路:

算法思路

根据题目要求,首先可以想到的是暴力枚举算法(遇事不决,暴力解决),遍历穷举出所有的连续子数组,寻找满足要求的子数组,最终就找到了最小的连续子数组:

class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
    	//暴力解法
        int n = nums.size();
        if (n == 0) {
            return 0;
        }
        //默认为最大值
        int ans = INT_MAX;
        //开始遍历
        for (int i = 0; i < n; i++) {
        //重置sum值
            int sum = 0;
            //判断子数组是否满足
            for (int j = i; j < n; j++) {
                sum += nums[j];
                if (sum >= s) {
                //满足就更新结果
                    ans = min(ans, j - i + 1);
                    break;
                }
            }
        }
        return ans == INT_MAX ? 0 : ans;
    }
};

这样暴力的算法的时间复杂度是O(n^2),我们看看可不可以进行优化:
来看图解(来着力扣官方)在这里插入图片描述

这样就模拟了滑动窗口:
做法:将右端元素划⼊窗⼝中,统计出此时窗⼝内元素的和:

  • 如果窗⼝内元素之和⼤于等于 target :更新结果,并且将左端元素划出去的同时继续判
    断是否满⾜条件并更新结果(因为左端元素可能很⼩,划出去之后依旧满⾜条件)
  • 如果窗⼝内元素之和不满⾜条件: right++ ,另下⼀个元素进⼊窗⼝。
class Solution {
public:
    int minSubArrayLen(int target, vector<int>& nums) {
        int left = 0,right = 0;
        //设置为最大值 保证没有满足的子数组时可以判断
        int len = INT_MAX;
        int sum = 0;
        sum += nums[left];

        while(left < nums.size() && right < nums.size()){
			//
            if(sum < target ){
                right++;
                if(right < nums.size())
                    sum += nums[right];

            }
            while (sum >= target){
                len = min (right - left + 1 , len) ;
                sum -= nums[left];
                left++;
            }
        }
        return len == INT_MAX ? 0:len;
    }
};

这样大大提高了算法的效率!!!
为何滑动窗⼝可以解决问题,并且时间复杂度更低?

  1. 这个窗⼝寻找的是:以当前窗⼝最左侧元素(记为 left1 )为基准,符合条件的情况。也就是在这道题中,从 left1 开始,满⾜区间和 sum >= target 时的最右侧(记为right1 )能到哪⾥。
  2. 我们既然已经找到从 left1 开始的最优的区间,那么就可以⼤胆舍去 left1 。但是如果继续像⽅法⼀⼀样,重新开始统计第⼆个元素( left2 )往后的和,势必会有⼤量重复的计算(因为我们在求第⼀段区间的时候,已经算出很多元素的和了,这些和是可以在计算下次区间和的时候⽤上的)。
  3. 此时, rigth1 的作⽤就体现出来了,我们只需将 left1 这个值从sum 中剔除。从right1 这个元素开始,往后找满⾜ left2 元素的区间(此时right1 也有可能是满⾜的,因为 left1 可能很⼩。 sum 剔除掉 left1 之后,依旧满⾜⼤于等于target )。这样我们就能省掉⼤量重复的计算。

这样我们不仅能解决问题,⽽且效率也会⼤⼤提升

继续我们来看下一题

Leetcode 3. 无重复字符的最长子串

题目描述

在这里插入图片描述
描述也是十分简单奥,我们接着来看如何解决

算法思路

首先想到的还是暴力枚举啊,我们可以借助哈希表来确定是否重复。
枚举过程中就会发现左右指针移动方向相同,所以可以进行滑动窗口

  1. 入窗口(右指针移动)
  2. 判断(判断是否需要移动左指针)
  3. 出窗口
  4. 更新结果
class Solution {
public:

    int lengthOfLongestSubstring(string s) {
        int len = 0;
        int n = s.size();
        //使用哈希进行判断是否重复
        int hash[128] = {0};
        int ret = 0;
        for(int left = 0,right = 0; right < n; right++){
       		//进入窗口
            hash[s[right]]++;
			//判断
            while(hash[s[right]] > 1){
            	//出窗口
                hash[s[left]]--;
                left++;
                len--;
            }
      		//更新结果
            len++;
            ret = max(len,ret);
        }
        return ret;

    }
};

这样就完美解决。
其实滑动窗口都是可以套用上面的模版的,不信?来看下一题

Leetcode 1004. 最大连续1的个数 III

题目描述

在这里插入图片描述
题目描述依然简单奥,只是判断条件发生了改变,我们需要来定义一个数字来比较是否满足少于k

算法思路

依旧是:

  1. 入窗口(右指针移动)
  2. 判断(判断是否需要移动左指针)
  3. 出窗口
  4. 更新结果
class Solution {
public:
    int longestOnes(vector<int>& nums, int k) {
        int tmp = 0,left = 0,right = 0,n = nums.size();
        int ret = 0;
        while(right < n){

            if(nums[right] == 0) {
                tmp++;    
            }

            while(tmp > k){
                if(nums[left] == 0) tmp--;
                left++;
            }

            ret = max(ret,right - left + 1);
            right++;
        }
        return ret;
    }
};

这样就成功完成解题!!!

总结

滑动窗口问题是可以通过模版来解决:

  1. 入窗口(右指针移动)
  2. 判断(按题分析判断是否需要移动左指针)
  3. 出窗口
  4. 更新结果

这样基本滑动窗口都可以解决,但重要的是理解滑动窗口的思路是如何得到的,是如何从暴力算法优化出来的。

送给大家一句话:

那脑袋里的智慧,就像打火石里的火花一样,不去打它是不肯出来的。——莎士比亚

Thanks♪(・ω・)ノ谢谢阅读!!!

下一篇文章见

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1530503.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Invicti v24.3.0 for Windows - Web 应用程序安全测试

Invicti v24.3.0 for Windows - Web 应用程序安全测试 Invicti Standard 12 Mar 2024 v24.3.0 请访问原文链接&#xff1a;https://sysin.org/blog/invicti/&#xff0c;查看最新版。原创作品&#xff0c;转载请保留出处。 作者主页&#xff1a;sysin.org Invicti 是一种自动…

什么是 JVM 双亲委派机制?

什么是 JVM 双亲委派机制&#xff1f; 题目 什么是 JVM 双亲委派机制&#xff1f; 推荐解析 通俗的说&#xff0c;双亲委派模型&#xff0c;就是加载类的时候&#xff0c;先请求其父类加载器去加载&#xff0c;如果父类加载器无法加载类&#xff0c;再尝试自己去加载类。如…

npm install不成功

解决办法&#xff1a; $env:NODE_OPTIONS"--openssl-legacy-provider" npm run dev

HarmonyOS应用开发实战 - Api9 拍照、拍视频、选择图片、选择视频、选择文件工具类

鸿蒙开发过程中&#xff0c;经常会进行系统调用&#xff0c;拍照、拍视频、选择图库图片、选择图库视频、选择文件。今天就给大家分享一个工具类。 1.话不多说&#xff0c;先展示样式 2.设计思路 根据官方提供的指南开发工具类&#xff0c;基础的拍照、拍视频、图库选照片、选…

【mybatis】objectwrapper解读

简介 在 MyBatis 中&#xff0c;ObjectWrapper 是一个关键的接口&#xff0c;用于详细封装了对象的属性信息。ObjectWrapper 主要用于内部操作&#xff0c;它抽象了对象的属性操作&#xff0c;使得 MyBatis 能够统一处理原生类型、Bean 对象以及 Map 集合等。 类图展示 主要功…

1、初识JVM

一、JVM是什么&#xff1f; JVM的英文全称是 Java Virtual Machine&#xff0c;其中文译名为Java虚拟机。它在本质上就是是一个运行在计算机上的程序&#xff0c;他的职责是运行Java字节码文件。 JVM执行流程如下 二、JVM有哪些功能&#xff1f; 2.1 解释和运行 对字节码文…

vue:功能【xlsx】动态行内合并

场景&#xff1a;纯前端导出excel数据&#xff0c;涉及到列合并、行合并。 注&#xff09;当前数据表头固定&#xff0c;行内数据不固定。以第一列WM为判断条件&#xff0c;相同名字的那几行数据合并单元格。合并的那几行数据&#xff0c;后面的列按需求进行合并。 注&#x…

SpringBoot + Vue项目(显示+删除+回显家居)

文章目录 1.显示家居信息1.com/sun/furn/controller/FurnController.java 添加方法2.postman测试3.src/views/HomeView.vue 修改el-table 并清空数据池tableData4.src/views/HomeView.vue 发送请求并取出数据1.方法池2.created阶段调用list方法3.结果展示 5.src/utils/request.…

【python】flask服务端响应与重定向处理

✨✨ 欢迎大家来到景天科技苑✨✨ &#x1f388;&#x1f388; 养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; &#x1f3c6; 作者简介&#xff1a;景天科技苑 &#x1f3c6;《头衔》&#xff1a;大厂架构师&#xff0c;华为云开发者社区专家博主&#xff0c;…

C语言经典算法-8

文章目录 其他经典例题跳转链接41.基数排序法42.循序搜寻法&#xff08;使用卫兵&#xff09;43.二分搜寻法&#xff08;搜寻原则的代表&#xff09;44.插补搜寻法45.费氏搜寻法 其他经典例题跳转链接 C语言经典算法-1 1.汉若塔 2. 费式数列 3. 巴斯卡三角形 4. 三色棋 5. 老鼠…

01 JDBC介绍

文章目录 JDBC本质版本使用核心APIDriverDriverManager驱动注册连接对象获取 Connection获取执行对象事务管理 Statement概述 ResultSet概述 JDBC本质 官方&#xff08;sun公司&#xff09;定义的一套操作所有关系型数据库的规则&#xff0c;即接口各个数据库厂商去实现这套接…

爬虫逆向实战(37)-某保险超市(AES,SHA256)

一、数据接口分析 主页地址&#xff1a;某保险超市 1、抓包 通过抓包可以发现数据接口是/tacpc/tiananapp/marketing_product_commodity/commodityList 2、判断是否有加密参数 请求参数是否加密&#xff1f; 通过查看“载荷”模块可以发现&#xff0c;有一个jsonKey加密参…

Servlet使用

文章目录 简介一、快速入门二、Servlet 执行流程三、Servlet 生命周期四、Servlet 方法介绍五、Servlet 体系结构六、Servlet urlPattern配置七、XML 配置方式编写 Servlet 简介 一、快速入门 <dependencies><dependency><groupId>javax.servlet</groupId…

绝地求生:[更新周报] 3/20 不停机更新:商城无上新、23号七周年HOT TIME!

大家好&#xff0c;我是闲游盒。本周三3月20号&#xff0c;绝地求生不会有停机时间&#xff0c;大家可以随便玩~ ▲本周可选地图池 亚服/东南亚服&#xff1a;艾伦格、米拉玛、泰戈、荣都、卡拉金&#xff1b; 日服/韩服KAKAO服&#xff1a;艾伦格、泰戈、萨诺、荣都、卡拉金&a…

数据分析-Pandas序列滑动窗口配置参数

数据分析-Pandas序列滑动窗口配置参数 数据分析和处理中&#xff0c;难免会遇到各种数据&#xff0c;那么数据呈现怎样的规律呢&#xff1f;不管金融数据&#xff0c;风控数据&#xff0c;营销数据等等&#xff0c;莫不如此。如何通过图示展示数据的规律&#xff1f; 数据表&…

【保姆级】VsCode 安装GitHub Copilot实操教程

0. 前言 GitHub Copilot&#xff0c;俗称“副驾驶”&#xff0c;是GitHub携手OpenAI共同打造的一款革命性的人工智能代码辅助工具。通过将其插件化集成至编辑器&#xff08;如VS Code&#xff09;&#xff0c;Copilot能够为用户提供强大的代码自动补全功能&#xff0c;并根据用…

图神经网络实战(5)——常用图数据集

图神经网络实战&#xff08;5&#xff09;——常用图数据集 0. 前言0. 图数据集介绍2. Cora 数据集3. Facebook Page-Page 数据集小结系列链接 0. 前言 图数据集往往比单纯的连接集合更丰富&#xff0c;节点和边也可以具有表示分数、颜色、单词等的特征。在输入数据中包含这些…

get_local_ip.bat:快速获取IPv4地址

批处理脚本&#xff0c;用于在Windows命令提示符下获取本地计算机的IPv4地址。 echo off ipconfig | findstr IPv4 pause - echo off&#xff1a;这会关闭命令提示符窗口中的命令回显&#xff0c;使得在运行脚本时不会显示每条命令的执行结果。 - ipconfig&#xff1a;这是一…

IDEA 配置阿里规范检测

IDEA中安装插件 配置代码风格检查规范 使用代码风格检测 在代码类中&#xff0c;右键 然后会给出一些不符合规范的修改建议&#xff1a; 保存代码时自动格式化代码 安装插件&#xff1a; 配置插件&#xff1a;

探索未来教育:在线教育微服务的革新之路

随着互联网技术的不断发展&#xff0c;在线教育已经成为现代教育领域的重要组成部分。而在在线教育的发展过程中&#xff0c;微服务架构的应用正逐渐引起人们的关注和探讨。本文将深入探讨在线教育微服务的概念、优势以及未来发展趋势。 ## 什么是在线教育微服务&#xff1f; …