问题:训练数据训练的很好啊,误差也不大,为什么在测试集上面有问题呢?
当算法在某个数据集当中出现这种情况,可能就出现了过拟合现象。
1、 什么是过拟合与欠拟合
- 欠拟合
- 过拟合
分析 - 第一种情况:因为机器学习到的天鹅特征太少了,导致区分标准太粗糙,不能准确识别出天鹅。
- 第二种情况:机器已经基本能区别天鹅和其他动物了。然后,很不巧已有的天鹅图片全是白天鹅的,于是机器经过学习后,会认为天鹅的羽毛都是白的,以后看到羽毛是黑的天鹅就会认为那不是天鹅。
定义
- 过拟合:一个假设在训练数据上能够获得比其他假设更好的拟合,
但是在测试数据集上却不能很好地拟合数据,此时认为这个假设出现了过拟合的现象。(模型过于复杂) - 欠拟合:一个假设在训练数据上不能获得更好的拟合,并且在测试数据集上也不能很好地拟合数据,此时认为这个假设出现了欠拟合的现象。(模型过于简单)