(done) NLP “bag-of-words“ 方法 (带有二元分类和多元分类两个例子)词袋模型、BoW

news2025/1/9 1:56:06

一个视频:https://www.bilibili.com/video/BV1mb4y1y7EB/?spm_id_from=333.337.search-card.all.click&vd_source=7a1a0bc74158c6993c7355c5490fc600

这里有个视频,讲解得更加生动形象一些

总得来说,词袋模型(Bow, bag-of-words) 是最简单的 “文本 —> 矢量”(把文本转为矢量) 模型

二元分类和多元分类的两个例子放在末尾


以下是 Claude3 的解释,我们慢慢看


The bag-of-words model is a simplifying representation used in natural language processing (NLP). In this representation, a text (such as a sentence or a document) is represented as an unordered collection of words, disregarding grammar and word order.

bag-of-words 模型是 NLP领域 里的一个简化表示方法。在这种表示方法里,一个文本(比如一个句子或者是一个文档) 会被表示成一个乱序的单词集合,无视里面的语法和单词顺序。


Here’s how it works:

  1. A vocabulary of known words is created from the corpus of texts.
  2. Each text is represented as a vector, with one dimension for each word in the vocabulary.
  3. If a word appears in the text, its value in the vector is non-zero (typically 1 or a number representing frequency); otherwise, it is zero.

For example, if the vocabulary is [“hello”, “goodbye”, “computer”], then the sentence “hello hello computer” would be represented by the vector [2, 0, 1].

如下,是 bag-of-words 的工作方法:

  1. 一堆已知单词的词汇表是从语料库里创建出来的
  2. 每一个文本都可以使用一个向量表示,词汇表中的每一个单词都可以使用一个一维向量来表示
  3. 如果一个单词在文本中出现,它在矢量中的值是 non-zero,否则就是 0。

举个例子,如果词汇表是 [“hello”, “goodbye”, “computer”],那么这句 “hello hello computer” 就可以用矢量 [2, 0, 1] 表示


The advantages of this model are its simplicity and the fact that it allows for straightforward application of techniques from fields like machine learning and information retrieval.

However, the bag-of-words model has several shortcomings:

  1. It disregards word order and grammar, which can be very important in natural language.
  2. It assumes that all words are equally important, ignoring semantics.
  3. For large vocabularies, the resulting vector can be very high-dimensional and sparse.

Despite these limitations, the bag-of-words model can serve as a baseline for more advanced NLP techniques and may still have some uses in simple applications.

这个模型的优点是:很简单,并且它允许直接应用来自机器学习和信息检索等领域的技术。

然而,bag-of-words 模型也有几个缺点:

  1. 它忽略了单词的顺序和语法结构,而这在自然语言中是非常重要的。 (单词向量无法展示单词顺序和语法结构)
  2. 它假设所有单词同等重要,忽视了词义语义信息。 (假设所有单词同等重要)
  3. 对于大型词汇表,生成的向量往往是非常高维且稀疏的。 (大型词汇表中,向量高维且稀疏)

尽管有这些限制,bag-of-words 模型仍然可以作为一些先进的 NLP技术的 baseline,并且在一些简单的应用中都是有用例的


In modern NLP systems, more advanced techniques like word embeddings (e.g., Word2Vec, GloVe, BERT) are commonly used to capture richer semantic and syntactic information.

在现代NLP系统中,通常采用更先进的技术,如词嵌入(例如Word2Vec、GloVe、BERT)来捕获更丰富的语义和语法信息。


二元分类和多元分类的两个例子放在末尾

二元分类:
在这里插入图片描述

多元分类:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1523116.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

spring boot nacos注册微服务示例demo_亲测成功

spring boot nacos注册微服务示例demo_亲测成功 先安装好Nacos Nacos安装使用 创建Maven项目 结构如图 例如项目名为: test-demo 下面有个子模块: test-demo-data-process 父模块pom.xml <?xml version"1.0" encoding"UTF-8"?> <project …

【Micropython ESP32】定时器Timer

文章目录 前言一、分频系数1.1 为什么需要分频系数1.2 分频系数怎么计算 二、如何使用定时器2.1 定时器构造函数2.2 定时器初始化2.3 关闭定时器 三、定时器示例代码总结 前言 在MicroPython中&#xff0c;ESP32微控制器提供了丰富的功能&#xff0c;其中之一是定时器&#xf…

【消息队列开发】 实现MemoryDataCenter类——管理内存数据

文章目录 &#x1f343;前言&#x1f334;数据格式的准备&#x1f332;内存操作&#x1f6a9;对于交换机&#x1f6a9;对于队列&#x1f6a9;对于绑定&#x1f6a9;对于单个消息&#x1f6a9;对于队列与消息链表&#x1f6a9;对于未确认消息&#x1f6a9;从硬盘上读取数据 ⭕总…

SpringCloud-深度理解ElasticSearch

一、Elasticsearch概述 1、Elasticsearch介绍 Elasticsearch&#xff08;简称ES&#xff09;是一个开源的分布式搜索和分析引擎&#xff0c;构建在Apache Lucene基础上。它提供了一个强大而灵活的工具&#xff0c;用于全文搜索、结构化搜索、分析以及数据可视化。ES最初设计用…

ARM和AMD介绍

一、介绍 ARM 和 AMD 都是计算机领域中的知名公司&#xff0c;它们在不同方面具有重要的影响和地位。 ARM&#xff08;Advanced RISC Machine&#xff09;&#xff1a;ARM 公司是一家总部位于英国的公司&#xff0c;专注于设计低功耗、高性能的处理器架构。ARM 架构以其精简指…

Vue前端开发记录(一)

本篇文章中的图片均为深色背景&#xff0c;请于深色模式下观看 说明&#xff1a;本篇文章的内容为vue前端的开发记录&#xff0c;作者在这方面的底蕴有限&#xff0c;所以仅作为参考 文章目录 一、安装配置nodejs,vue二、vue项目目录结构三、前期注意事项0、组件1、数不清的报…

一文速通ESP32(基于MicroPython)——含示例代码

ESP32 简介 ESP32-S3 是一款集成 2.4 GHz Wi-Fi 和 Bluetooth 5 (LE) 的 MCU 芯片&#xff0c;支持远距离模式 (Long Range)。ESP32-S3 搭载 Xtensa 32 位 LX7 双核处理器&#xff0c;主频高达 240 MHz&#xff0c;内置 512 KB SRAM (TCM)&#xff0c;具有 45 个可编程 GPIO 管…

IDEA 多个git仓库项目放一个窗口

1、多个项目先通过新建module或者CtrlAltShiftS 添加module引入 2、重点是右下角有时候git 分支视图只有一个module的Repositories。这时候需要去设置把多个git仓库添加到同一个窗口才能方便提交代码。

十五、自回归(AutoRegressive)和自编码(AutoEncoding)语言模型

参考自回归语言模型&#xff08;AR&#xff09;和自编码语言模型&#xff08;AE&#xff09; 1 自回归语言模型&#xff08; AR&#xff09; 自回归语言模型&#xff08;AR&#xff09;就是根据上文内容&#xff08;或下文内容&#xff09;预测下一个&#xff08;或前一个&…

微信小程序(五十八)分步表单多页面传值

注释很详细&#xff0c;直接上代码 上一篇 新增内容&#xff1a; 1.分步表单传值 2.伪数据生成 源码&#xff1a; app.json {"pages": ["pages/index/index","pages/building/building","pages/room/room","pages/logs/logs&quo…

整数和浮点数在内存中是如何存储的?

1.整数在内存中的存储 首先数据在内存中都是以二进制的形式存储的&#xff0c;而整数在内存中也是以二进制的形式存储的&#xff0c;而整数的表示形式有三种&#xff0c;分别是源码&#xff0c;反码&#xff0c;补码&#xff0c;而整数在内存中是以补码的形式存放的。 三种表示…

图文并茂!在Oracle VM VirtualBox上安装Ubuntu虚拟机的详细步骤指南

&#x1f31f; 前言 欢迎来到我的技术小宇宙&#xff01;&#x1f30c; 这里不仅是我记录技术点滴的后花园&#xff0c;也是我分享学习心得和项目经验的乐园。&#x1f4da; 无论你是技术小白还是资深大牛&#xff0c;这里总有一些内容能触动你的好奇心。&#x1f50d; &#x…

CTFHUB-web-信息泄漏

题目所在位置&#xff1a;技能树->web->信息泄漏 目录遍历 打开题目&#xff0c;我们进入的是这个页面 翻译过来就是 得到的信息就是&#xff1a;flag要在这些目录里面寻找&#xff0c;我们直接一个一个点开查看就行 发现得到一个flag.txt&#xff0c;点击打开得到flag …

Python之requests实现github模拟登录

文章目录 github 模拟登录前言模拟登录流程抓包操作查看登录表单的内容登录操作 模拟登录操作在 main函数的调用获得 auth_token调用/session接口登录处理检测登录是否成功 总结&#xff1a; github 模拟登录 前言 前面学习了requests模块的基础学习后&#xff0c;接下来做一个…

upload-labs通关方式

pass-1 通过弹窗可推断此关卡的语言大概率为js&#xff0c;因此得出两种解决办法 方法一 浏览器禁用js 关闭后就逃出了js的验证就可以正常php文件 上传成功后打开图片链接根据你写的一句话木马执行它&#xff0c;我这里采用phpinfo&#xff08;&#xff09; 方法二 在控制台…

【高通camera hal bug分析】高通自带相机镜像问题

首先打了两个log&#xff0c;一个是开启镜像的log&#xff0c;还有一个是没有开启镜像的log&#xff0c;如果我们开启镜像以后&#xff0c;观察开启镜像log发现 , 这段代码走的没有任何问题&#xff0c;因为Flip的值等于1了。 关闭镜像log如下&#xff1a; 如果我们不开启镜像…

21 OpenCV 直方图均衡化

文章目录 直方图概念均衡的目的equalizeHist 均衡化算子示例 直方图概念 图像直方图&#xff0c;是指对整个图像像在灰度范围内的像素值(0~255)统计出现频率次数&#xff0c;据此生成的直方图&#xff0c;称为图像直方图-直方图。直方图反映了图像灰度的分布情况。 均衡的目的…

自定义组件

1. 组件 ① 在项目的根目录中&#xff0c;鼠标右键&#xff0c;创建 components -> test 文件夹 ② 在新建的 components -> test 文件夹上&#xff0c;鼠标右键&#xff0c;点击“新建 Component” ③ 键入组件的名称之后回车&#xff0c;会自动生成组件对应的 4 个文件…

JAVA实战开源项目:高校学院网站(Vue+SpringBoot)

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 学院院系模块2.2 竞赛报名模块2.3 教育教学模块2.4 招生就业模块2.5 实时信息模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 学院院系表3.2.2 竞赛报名表3.2.3 教育教学表3.2.4 招生就业表3.2.5 实时信息表 四、系…

USB打印机改网络打印机

解决传统SMB缺陷可跨平台设备使用。 1、安装deepin 如何安装 – 深度科技社区 2、配置IP地址 vi /etc/network/interfaces && systemctl restart networking 3、安装程序上传到服务器并解压。运行0Dinstalld目录下文件 sh 0Dinstalld/0installdd.sh http://XX.XX.XX…