目录
前言
CBAM
GAM
SimAM
EMA
CAA
ECA
CA
添加方法
YAML文件添加
使用改进训练
前言
本篇文章将为大家介绍Ultralytics/YOLOv8/YOLOv11中常用注意力机制的添加,可以满足一些简单的涨点需求。本文仅写方法,原理不多讲解,需要可跳转论文查看,文章中出现的所有结构示意图都来自论文中。
改进模块的教程制作不易,如果这篇文章对你有帮助的话,请点赞、收藏和打赏!
CBAM
论文:点击查看论文
结构示意图
代码
import torch
import torch.nn as nn
class ChannelAttention(nn.Module):
def __init__(self, channels: int) -> None:
"""Initializes the class and sets the basic configurations and instance variables required."""
super().__init__()
self.pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Conv2d(channels, channels, 1, 1, 0, bias=True)
self.act = nn.Sigmoid()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Applies forward pass using activation on convolutions of the input, optionally using batch normalization."""
return x * self.act(self.fc(self.pool(x)))
class SpatialAttention(nn.Module):
"""Spatial-attention module."""
def __init__(self, kernel_size=7):
"""Initialize Spatial-attention module with kernel size argument."""
super().__init__()
assert kernel_size in (3, 7), "kernel size must be 3 or 7"
padding = 3 if kernel_size == 7 else 1
self.cv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
self.act = nn.Sigmoid()
def forward(self, x):
"""Apply channel and spatial attention on input for feature recalibration."""
return x * self.act(self.cv1(torch.cat([torch.mean(x, 1, keepdim=True), torch.max(x, 1, keepdim=True)[0]], 1)))
class CBAM(nn.Module):
"""Convolutional Block Attention Module."""
def __init__(self, c1, kernel_size=7):
"""Initialize CBAM with given input channel (c1) and kernel size."""
super().__init__()
self.channel_attention = ChannelAttention(c1)
self.spatial_attention = SpatialAttention(kernel_size)
def forward(self, x):
"""Applies the forward pass through C1 module."""
return self.spatial_attention(self.channel_attention(x))
GAM
论文:点击查看论文
结构示意图
代码
import torch
import torch.nn as nn
class GAM(nn.Module):
def __init__(self, in_channels, rate=4):
super().__init__()
out_channels = in_channels
in_channels = int(in_channels)
out_channels = int(out_channels)
inchannel_rate = int(in_channels / rate)
self.linear1 = nn.Linear(in_channels, inchannel_rate)
self.relu = nn.ReLU(inplace=True)
self.linear2 = nn.Linear(inchannel_rate, in_channels)
self.conv1 = nn.Conv2d(in_channels, inchannel_rate, kernel_size=7, padding=3, padding_mode='replicate')
self.conv2 = nn.Conv2d(inchannel_rate, out_channels, kernel_size=7, padding=3, padding_mode='replicate')
self.norm1 = nn.BatchNorm2d(inchannel_rate)
self.norm2 = nn.BatchNorm2d(out_channels)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
b, c, h, w = x.shape
# B,C,H,W ==> B,H*W,C
x_permute = x.permute(0, 2, 3, 1).view(b, -1, c)
# B,H*W,C ==> B,H,W,C
x_att_permute = self.linear2(self.relu(self.linear1(x_permute))).view(b, h, w, c)
# B,H,W,C ==> B,C,H,W
x_channel_att = x_att_permute.permute(0, 3, 1, 2)
x = x * x_channel_att
x_spatial_att = self.relu(self.norm1(self.conv1(x)))
x_spatial_att = self.sigmoid(self.norm2(self.conv2(x_spatial_att)))
out = x * x_spatial_att
return out
if __name__ == '__main__':
img = torch.rand(1, 64, 32, 48)
b, c, h, w = img.shape
net = GAM(in_channels=c, out_channels=c)
output = net(img)
print(output.shape)
SimAM
论文:点击查看论文
结构示意图
代码
import torch
import torch.nn as nn
class SimAM(torch.nn.Module):
def __init__(self, e_lambda=1e-4):
super(SimAM, self).__init__()
self.activaton = nn.Sigmoid()
self.e_lambda = e_lambda
def __repr__(self):
s = self.__class__.__name__ + '('
s += ('lambda=%f)' % self.e_lambda)
return s
@staticmethod
def get_module_name():
return "simam"
def forward(self, x):
b, c, h, w = x.size()
n = w * h - 1
x_minus_mu_square = (x - x.mean(dim=[2, 3], keepdim=True)).pow(2)
y = x_minus_mu_square / (4 * (x_minus_mu_square.sum(dim=[2, 3], keepdim=True) / n + self.e_lambda)) + 0.5
return x * self.activaton(y)
if __name__ == '__main__':
input = torch.randn(3, 64, 7, 7)
model = SimAM()
outputs = model(input)
print(outputs.shape)
EMA
论文:点击查看论文
结构图
代码
import torch
from torch import nn
class EMA(nn.Module):
def __init__(self, channels, factor=8):
super(EMA, self).__init__()
self.groups = factor
assert channels // self.groups > 0
self.softmax = nn.Softmax(-1)
self.agp = nn.AdaptiveAvgPool2d((1, 1))
self.pool_h = nn.AdaptiveAvgPool2d((None, 1))
self.pool_w = nn.AdaptiveAvgPool2d((1, None))
self.gn = nn.GroupNorm(channels // self.groups, channels // self.groups)
self.conv1x1 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=1, stride=1, padding=0)
self.conv3x3 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=3, stride=1, padding=1)
def forward(self, x):
b, c, h, w = x.size()
group_x = x.reshape(b * self.groups, -1, h, w) # b*g,c//g,h,w
x_h = self.pool_h(group_x)
x_w = self.pool_w(group_x).permute(0, 1, 3, 2)
hw = self.conv1x1(torch.cat([x_h, x_w], dim=2))
x_h, x_w = torch.split(hw, [h, w], dim=2)
x1 = self.gn(group_x * x_h.sigmoid() * x_w.permute(0, 1, 3, 2).sigmoid())
x2 = self.conv3x3(group_x)
x11 = self.softmax(self.agp(x1).reshape(b * self.groups, -1, 1).permute(0, 2, 1))
x12 = x2.reshape(b * self.groups, c // self.groups, -1) # b*g, c//g, hw
x21 = self.softmax(self.agp(x2).reshape(b * self.groups, -1, 1).permute(0, 2, 1))
x22 = x1.reshape(b * self.groups, c // self.groups, -1) # b*g, c//g, hw
weights = (torch.matmul(x11, x12) + torch.matmul(x21, x22)).reshape(b * self.groups, 1, h, w)
return (group_x * weights.sigmoid()).reshape(b, c, h, w)
CAA
论文:点击查看论文
结构示意图
代码
import torch.nn as nn
def autopad(k, p=None, d=1): # kernel, padding, dilation
"""Pad to 'same' shape outputs."""
if d > 1:
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
class Conv(nn.Module):
"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
default_act = nn.SiLU() # default activation
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
"""Initialize Conv layer with given arguments including activation."""
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
def forward(self, x):
"""Apply convolution, batch normalization and activation to input tensor."""
return self.act(self.bn(self.conv(x)))
def forward_fuse(self, x):
"""Perform transposed convolution of 2D data."""
return self.act(self.conv(x))
class CAA(nn.Module):
def __init__(self, ch, h_kernel_size = 11, v_kernel_size = 11) -> None:
super().__init__()
self.avg_pool = nn.AvgPool2d(7, 1, 3)
self.conv1 = Conv(ch, ch)
self.h_conv = nn.Conv2d(ch, ch, (1, h_kernel_size), 1, (0, h_kernel_size // 2), 1, ch)
self.v_conv = nn.Conv2d(ch, ch, (v_kernel_size, 1), 1, (v_kernel_size // 2, 0), 1, ch)
self.conv2 = Conv(ch, ch)
self.act = nn.Sigmoid()
def forward(self, x):
attn_factor = self.act(self.conv2(self.v_conv(self.h_conv(self.conv1(self.avg_pool(x))))))
return attn_factor * x
ECA
论文:点击查看论文
结构示意图
代码
import torch, math
from torch import nn
class EfficientChannelAttention(nn.Module): # Efficient Channel Attention module
def __init__(self, c, b=1, gamma=2):
super(EfficientChannelAttention, self).__init__()
t = int(abs((math.log(c, 2) + b) / gamma))
k = t if t % 2 else t + 1
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv1 = nn.Conv1d(1, 1, kernel_size=k, padding=int(k/2), bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
out = self.avg_pool(x)
out = self.conv1(out.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)
out = self.sigmoid(out)
return out * x
if __name__ == '__main__':
input = torch.randn(50, 512, 7, 7)
eca = EfficientChannelAttention(c=512)
output = eca(input)
print(output.shape)
CA
论文:点击查看论文
结构示意图
代码
import torch
import torch.nn as nn
class h_sigmoid(nn.Module):
def __init__(self, inplace=True):
super(h_sigmoid, self).__init__()
self.relu = nn.ReLU6(inplace=inplace)
def forward(self, x):
return self.relu(x + 3) / 6
class h_swish(nn.Module):
def __init__(self, inplace=True):
super(h_swish, self).__init__()
self.sigmoid = h_sigmoid(inplace=inplace)
def forward(self, x):
return x * self.sigmoid(x)
class CA(nn.Module):
def __init__(self, inp, reduction=32):
super(CA, self).__init__()
self.pool_h = nn.AdaptiveAvgPool2d((None, 1))
self.pool_w = nn.AdaptiveAvgPool2d((1, None))
mip = max(8, inp // reduction)
self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)
self.bn1 = nn.BatchNorm2d(mip)
self.act = h_swish()
self.conv_h = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0)
self.conv_w = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0)
def forward(self, x):
identity = x
n, c, h, w = x.size()
x_h = self.pool_h(x)
x_w = self.pool_w(x).permute(0, 1, 3, 2)
y = torch.cat([x_h, x_w], dim=2)
y = self.conv1(y)
y = self.bn1(y)
y = self.act(y)
x_h, x_w = torch.split(y, [h, w], dim=2)
x_w = x_w.permute(0, 1, 3, 2)
a_h = self.conv_h(x_h).sigmoid()
a_w = self.conv_w(x_w).sigmoid()
out = identity * a_w * a_h
return out
添加方法
1.创建文件
先在ultralytics-main/ultralytics/nn 目录下创建AddAttention文件夹,然后复制其中一个想使用的注意力机制到AddAttention文件夹下创建py文件,比如CBAM.py,然后同样在该目录下创建一个__init__.py 文件,里面用哪个注意力机制就导入哪个文件,比如
from .CBAM import *
from .GAM import *
from .SimAM import *
from .EMA import *
from .CAA import *
from .ECA import *
from .CA import *
用哪个导入哪个就可以,没有创建py文件不要导入,会报错
2.导入文件
找到ultralytics-main/ultralytics/nn/tasks.py,打开后先导入AddAttention文件夹中所有的库,输入
from .AddAttention import *
效果如下图,可以在前几行任意一行位置添加。
然后往下翻找到 parse_model 函数,在elif m is AIFI 前面添加。
#注意力机制
elif m in {CBAM, GAM, EMA, ECA, CA, CAA}:
c2 = ch[f]
args = [c2, *args]
大概是1000行左右的位置,添加到elif m is AIFI 前面,注意缩进。用到哪个添加哪个,没有用到的添加会报错,注意SimAM没有参数传入,所以这一步不需要添加SimAM。
YAML文件添加
模块需要加入到YAML文件中并使用训练才算被应用的改进,YOLOv11的YAML如下,
在ultralytics-main/ultralytics/cfg/models/11 目录下新建一个 yolo11n-CBAM.yaml ,其它注意力机制请自行修改文件名,本文列出了很多注意力机制可添加的位置,使用时留一个两个就可以。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 2, C3k2, [1024, True]] #8
- [-1, 1, CBAM, []] #9
- [-1, 1, SPPF, [1024, 5]] # 10
- [-1, 1, CBAM, []] # 11
- [-1, 2, C2PSA, [1024]] # 12
- [-1, 1, CBAM, []] #13
# - [-1, 1, GAM, []] # 13
# - [-1, 1, SimAM, []] # 13
# - [-1, 1, EMA, []] # 13
# - [-1, 1, CAA, []] # 13
# - [-1, 1, ECA, []] # 13
# - [-1, 1, CA, []] # 13
# YOLO11n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 16
- [-1, 1, CBAM, []] #17
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 20 (P3/8-small)
- [-1, 1, CBAM, []] #21
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 17], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 24 (P4/16-medium)
- [-1, 1, CBAM, []] #25
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 28 (P5/32-large)
- [-1, 1, CBAM, []] #29
- [[21, 25, 29], 1, Detect, [nc]] # Detect(P3, P4, P5)
多个位置可添加,多余的需要删除,CBAM可以替换为其它的,自行替换且在不同位置添加测试效果。
YOLOv8的YAML如下,在ultralytics-main/ultralytics/cfg/models/v8 目录下新建一个 yolov8n-CBAM.yaml,其它注意力机制请自行修改文件名。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2f, [1024, True]] #8
- [-1, 1, CBAM, []] #9
- [-1, 1, SPPF, [1024, 5]] # 10
- [-1, 1, CBAM, []] #11
# - [-1, 1, GAM, []] # 11
# - [-1, 1, SimAM, []] # 11
# - [-1, 1, EMA, []] # 11
# - [-1, 1, CAA, []] # 11
# - [-1, 1, ECA, []] # 11
# - [-1, 1, CA, []] # 11
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 14
- [-1, 1, CBAM, []] #15
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 18 (P3/8-small)
- [-1, 1, CBAM, []] #19
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 15], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 22 (P4/16-medium)
- [-1, 1, CBAM, []] #23
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 11], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 26 (P5/32-large)
- [-1, 1, CBAM, []] #27
- [[19, 23, 27], 1, Detect, [nc]] # Detect(P3, P4, P5)
需要绘制网络结构图的可看下面这篇文章。
YOLOv11/YOLOv8网络结构图绘制,本文适用于论文添加修改模块,绘制属于自己的网络结构图_在python用graphviz画yolov8算法结构图-CSDN博客文章浏览阅读1.4k次,点赞10次,收藏27次。本文将将会您绘制自己的YOLOv11/v8模型网络结构图,无论是针对初学者还是有经验的深度学习研究者,本文都将为您提供清晰的指导和实用的技巧,使您能够快速上手绘制高质量的网络结构图,为您的研究工作增添亮点。_在python用graphviz画yolov8算法结构图https://blog.csdn.net/qq_67105081/article/details/144703912?spm=1001.2014.3001.5501
使用改进训练
from ultralytics import YOLO
if __name__ == '__main__':
model = YOLO('ultralytics/cfg/models/11/yolo11n-CBAM.yaml') # 从YAML建立一个新模型
#model.load('yolo11n.pt')
# # 训练模型
results = model.train(data='data.yaml',
epochs=100, imgsz=640, device=0, optimizer='SGD', workers=8, batch=64, amp=False)
使用YOLOv11训练代码做演示,YOLOv8则替换文件路径及文件名。
改进模块的教程制作不易,如果这篇文章对你有帮助的话,请点赞、收藏和打赏!