【考研数学】高等数学总结

news2024/11/18 19:58:36

文章目录

  • 第一章 极限 函数 连续
    • 1.1 极限存在准则及两个重要极限
      • 1.1.1 夹逼定理
        • 1.1.1.1 数列夹逼定理
        • 1.1.1.2函数夹逼定理
      • 1.1.2 两个重要极限
        • 1.1.2.1 极限公式1
          • 1.1.2.1.1 证明
          • 1.1.2.1.2 数列的单调有界收敛准则
            • 1.1.2.1.2.1 二项式定理
            • 1.1.2.1.2.2 证明
        • 1.1.2.2 极限公式2
          • 1.1.2.2.1 证明(与1.2.1.2数列单调有界收敛准则对应)
    • 1.2 无穷大与无穷小
      • 1.2.1 概念
        • 1.2.1.1 无穷小的概念
        • 1.2.1.2 无穷大的概念
        • 1.2.1.3 无穷小阶的概念


这样记没任何用处,还很浪费时间,但是这样删了太可惜了,反正没人看,就随便发发,不完整的

第一章 极限 函数 连续

1.1 极限存在准则及两个重要极限

1.1.1 夹逼定理

1.1.1.1 数列夹逼定理

如果数列 { X n } \{X_n\} {Xn} , { Y n } \{Y_n\} {Yn} { Z n } \{Z_n\} {Zn} 满足下列条件:
(1)当 n > N 0 n>N_0 n>N0 时,其中 N 0 ∈ N ∗ N_0\in N^* N0N,有 Y n ≤ X n ≤ Z n Y_n\leq X_n\leq Z_n YnXnZn .
(2) { Y n } \{Y_n\} {Yn} { Z n } \{Z_n\} {Zn} 有相同的极限 a a a ,设 − ∞ < a < + ∞ -\infty<a<+\infty <a<+ , 则,数列 { X n } \{X_n\} {Xn} 的极限存在,且 lim ⁡ n → ∞ X n = a \lim_{n\to\infty}X_n=a limnXn=a .

证明:因为 lim ⁡ n → ∞ Y n = a \lim_{n\to\infty}Y_n=a limnYn=a , lim ⁡ n → ∞ Z n = a \lim_{n\to\infty}Z_n=a limnZn=a ,所以根据数列极限的定义,对于任意给定的正数 ε \varepsilon ε ,存在正整数 N 1 N_1 N1 N 2 N_2 N2 ,当 n > N 1 n>N_1 n>N1时,有 ∣ Y n − a ∣ < ε |Y_n-a|<\varepsilon Yna<ε,当 n > N 2 n>N_2 n>N2 时,有 ∣ Z n − a ∣ < ε |Z_n-a|<\varepsilon Zna<ε,取 n = m a x { N 0 , N 1 , N 2 } n=max\left\{N_0,N_1,N_2\right\} n=max{N0,N1,N2},则当 n > N n>N n>N 时, ∣ Y n − a ∣ < ε |Y_n-a|<\varepsilon Yna<ε ∣ Z n − a ∣ < ε |Z_n-a|<\varepsilon Zna<ε 同时成立,且 Y n ≤ X n ≤ Z n Y_n\leq X_n\leq Z_n YnXnZn ,即 a − ε < Y n < a + ε a-\varepsilon<Y_n<a+\varepsilon aε<Yn<a+ε , a − ε < Z n < a + ε a-\varepsilon<Z_n<a+\varepsilon aε<Zn<a+ε ,又因为 a − ε < Y n ≤ X n ≤ Z n < a + ε a-\varepsilon<Y_n\leq X_n\leq Z_n<a+\varepsilon aε<YnXnZn<a+ε ,即 ∣ X n − a ∣ < ε |X_n-a|<\varepsilon Xna<ε 成立。也就是说 lim ⁡ n → ∞ X n = a n \lim_{n\to\infty}X_n=a_n limnXn=an

https://blog.csdn.netLaoYuanPython

1.1.1.2函数夹逼定理

f ( x ) f(x) f(x) g ( x ) g(x) g(x)在xO处连续且存在相同的极限A,即 x → x x\to x xxO时,lim f(x)=lim g ( x ) = A g(x)=\mathbb{A} g(x)=A,则若有函数K(x)在x0 的某邻域内(如 x 0 ∈ ( x 1 , x 2 ) x0\in(x1,x2) x0(x1,x2)),恒有f(x)sk(x)sg(x),则当X趋近x0时,有lim f(x)slim k(x)slim g(x), 即Aslim k(x)sA
故lim k(x)=A。
简单地说:函数A>B,函数B>C,函数A的极限是X,函数C的极限也是X ,那么函数B的极限就一定是X,这个 就是夹逼定理。

1.1.2 两个重要极限

1.1.2.1 极限公式1

lim ⁡ x → 0 sin ⁡ x x = 1 \lim_{x\to0}\frac{\sin x}x=1 x0limxsinx=1
使用该公式时注意它的使用条件。一定是对 0 0 这样的函数形式求极限 使用该公式时注意它的使用条件。一定是对 \frac00 这样的函数形式求极限 使用该公式时注意它的使用条件。一定是对00这样的函数形式求极限

1.1.2.1.1 证明

在这里插入图片描述
在该圆里,半径为1,OC为X,AC为Y,
则sinθ=y/r=y,tanθ=Y/X=BD/OB=BD,弧AB的长=θ * 2πr/360 =θ * 2π/360 =θ
扇形的面积公式为lr/2=θ

1.S△OBD>S扇OAB>S△OAB=tanθ/2>θ/2>sinθ/2
2.tanθ > θ > sinθ = tanθ/sinθ > θ/sinθ > 1 = 1/cosθ>θ / sinθ > 1,在θ趋于0时cossθ的极限值为1,因此1/cosθ极限值为1,根据夹逼定理θ / sinθ的极限值为1。

1.1.2.1.2 数列的单调有界收敛准则
1.1.2.1.2.1 二项式定理

1.二项式定理的内容
( a + b ) n = C n 0 a n + C n 1 a n − 1 b + ⋯ + C n k a n − k b k + ⋯ + C n n b n (a+b)^{n}=C_{n}^{0}a^{n}+C_{n}^{1}a^{n-1}b+\cdots+C_{n}^{k}a^{n-k}b^{k}+\cdots+C_{n}^{n}b^{n} (a+b)n=Cn0an+Cn1an1b++Cnkankbk++Cnnbn
右边多项式叫(a+b)^n的二项展开式;
2.二项式系数 : C n 0 , C n 1 , C n 2 , . . . C n r , . . . C n n :C_n^0,C_n^1,C_n^2,...C_n^r,...C_n^n :Cn0,Cn1,Cn2,...Cnr,...Cnn
3,二项展开式的通项 T k + 1 = C n k a n − k b k T_{k+1}=C_n^ka^{n-k}b^k Tk+1=Cnkankbk
(b+a)^n, (a-b)^n的通项则分别为: T k + 1 = C n k b n − k a k ; T k + 1 = C n k a n − k ( − b ) k T_{k+1}=C_{n}^{k}b^{n-k}a^{k};T_{k+1}=C_{n}^{k}a^{n-k}\left(-b\right)^{k} Tk+1=Cnkbnkak;Tk+1=Cnkank(b)k
4.在定理中,令 a = 1 , b = x a=1,b=x a=1,b=x,则
( 1 + x ) n = C n 0 + C n 1 x + C n 2 x 2 + ⋯ + C n r x r + ⋯ + C n n x n \left(1+x\right)^n=C_n^0+C_n^1x+C_n^2x^2+\cdots+C_n^rx^r+\cdots+C_n^nx^n (1+x)n=Cn0+Cn1x+Cn2x2++Cnrxr++Cnnxn

1.1.2.1.2.2 证明

证明  a n = ( 1 + 1 n ) n  收敛 . \text{证明 }a_n=(1+\frac1n)^n\text{ 收敛}. 证明 an=(1+n1)n 收敛.

证明 a n = ( 1 + 1 n ) n  收敛 . 证 a n = 1 + 1 + n ( n − 1 ) 2 ! ⋅ 1 n 2 + ⋯ + n ( n − 1 ) ⋯ ( n − k + 1 ) k ! ⋅ 1 n k + ⋯ + n ( n − 1 ) ⋯ 2 ⋅ 1 n ! ⋅ 1 n n = 1 + 1 + 1 2 ! ( 1 − 1 n ) + ⋯ + 1 k ! ( 1 − 1 n ) ( 1 − 2 n ) ⋯ ( 1 − k − 1 n ) + ⋯ + 1 n ! ( 1 − 1 n ) ( 1 − 2 n ) ⋯ ( 1 − n − 1 n ) ∴ a n < a n + 1 , a n  单调增 . \begin{aligned} &&& \text{证明}a_n=(1+\frac1n)^n\text{ 收敛}. \\ &&& \text{证}\quad a_n=1+1+\frac{n(n-1)}{2!}\cdot\frac1{n^2}+\cdots+\frac{n(n-1)\cdots(n-k+1)}{k!}\cdot\frac1{n^k} \\ &&&+\cdots+\frac{n(n-1)\cdots2\cdot1}{n!}\cdot\frac1{n^n} \\ &&&=1+1+\frac1{2!}{\left(1-\frac1n\right)}+\cdots+\frac1{k!}{\left(1-\frac1n\right)}{\left(1-\frac2n\right)}\cdots{\left(1-\frac{k-1}n\right)} \\ &&&+\cdots+\frac1{n!}\left(1-\frac1n\right)\left(1-\frac2n\right)\cdots\left(1-\frac{n-1}n\right) \\ &&&\therefore a_n<a_{n+1},\quad a_n\text{ 单调增}. \end{aligned} 证明an=(1+n1)n 收敛.an=1+1+2!n(n1)n21++k!n(n1)(nk+1)nk1++n!n(n1)21nn1=1+1+2!1(1n1)++k!1(1n1)(1n2)(1nk1)++n!1(1n1)(1n2)(1nn1)an<an+1,an 单调增.
又 a n < 1 + 1 + 1 2 ! + 1 3 ! + ⋯ + 1 k ! + ⋯ + 1 n ! < 1 + 1 + 1 2 + 1 2 2 + ⋯ + 1 2 n − 1 = 1 + 1 − 1 2 n 1 − 1 2 < 1 + 1 1 − 1 2 = 3 ∴ a 有界 . 记作 lim ⁡ n → ∞ ( 1 + 1 n ) n = e 0<e<3  \begin{aligned} &又a_{n}&& <1+1+\frac1{2!}+\frac1{3!}+\cdots+\frac1{k!}+\cdots+\frac1{n!} \\ &&&<1+1+\frac12+\frac1{2^2}+\cdots+\frac1{2^{n-1}}=1+\frac{1-\frac1{2^n}}{1-\frac12}<1+\frac1{1-\frac12}=3\\ &\therefore a{有界}. \\ &\text{记作}\boxed{\lim_{n\to\infty}(1+\frac1n)^n=e}\text{0<e<3}\ \end{aligned} ana有界.记作nlim(1+n1)n=e0<e<3 <1+1+2!1+3!1++k!1++n!1<1+1+21+221++2n11=1+12112n1<1+1211=3

1.1.2.2 极限公式2

lim ⁡ x → ∞ ( 1 + 1 x ) x = e \lim\limits_{x\to\infty}(1+\frac{1}{x})^x=e xlim(1+x1)x=e
变式

lim ⁡ x → 0 ( 1 + x ) 1 x = e \lim_{x\to0}(1+x)^{\frac1x}=e x0lim(1+x)x1=e

1.1.2.2.1 证明(与1.2.1.2数列单调有界收敛准则对应)

证明:首先证明此极限存在
构造数列 x n = ( 1 + 1 n ) n x_n=\left(1+\frac1n\right)^n xn=(1+n1)n

x n = 1 + C n 1 1 n + C n 2 1 n 2 + C n 3 1 n 3 + … + C n n 1 n n = 1 + n ⋅ 1 n + n ( n − 1 ) 2 ! ⋅ 1 n 2 + n ( n − 1 ) ( n − 2 ) 3 ! ⋅ 1 n 3 + ⋯ + n ( n − 1 ) ( n − 2 ) ⋅ ⋅ ⋅ 1 n ! ⋅ 1 n n = 1 + 1 + 1 2 ! ⋅ ( 1 − 1 n ) + 1 3 ! ⋅ ( 1 − 1 n ) ( 1 − 2 n ) + ⋯ + 1 n ! ⋅ ( 1 − 1 n ) ( 1 − 2 n ) ⋯ ( 1 − n − 1 n ) < 2 + 1 2 ! + 1 3 ! + ⋯ + 1 n ! < 2 + 1 2 + 1 2 2 + ⋯ + + 1 2 n − 1 = 3 − 1 2 n − 1 <3 \begin{aligned} x_{n}& =1+C_n^1\frac1n+C_n^2\frac1{n^2}+C_n^3\frac1{n^3}+\ldots+C_n^n\frac1{n^n} \\ &=1+n\cdot\frac1n+\frac{n(n-1)}{2!}\cdot\frac1{n^2}+\frac{n(n-1)(n-2)}{3!}\cdot\frac1{n^3}+\cdots+\frac{n(n-1)(n-2)\cdotp\cdotp\cdotp1}{n!}\cdot\frac1{n^n} \\ &=1+1+\frac1{2!}\cdot\left(1-\frac1n\right)+\frac1{3!}\cdot\left(1-\frac1n\right)\left(1-\frac2n\right)+\cdots+\frac1{n!}\cdot\left(1-\frac1n\right)\left(1-\frac2n\right) \\ \cdots\left(1-\right.& \left.\frac{n-1}n\right) \\ &<2+\frac1{2!}+\frac1{3!}+\cdots+\frac1{n!} \\ &<2+\frac12+\frac1{2^2}+\cdots++\frac1{2^{n-1}} \\ &=3-\frac1{2^{n-1}} \\ &\text{<3} \end{aligned} xn(1=1+Cn1n1+Cn2n21+Cn3n31++Cnnnn1=1+nn1+2!n(n1)n21+3!n(n1)(n2)n31++n!n(n1)(n2)⋅⋅⋅1nn1=1+1+2!1(1n1)+3!1(1n1)(1n2)++n!1(1n1)(1n2)nn1)<2+2!1+3!1++n!1<2+21+221+++2n11=32n11<3
而对于n+1

x n + 1 = ( 1 + 1 n + 1 ) n + 1 = 1 + 1 + 1 2 ! ⋅ ( 1 − 1 n + 1 ) + 1 3 ! ⋅ ( 1 − 1 n + 1 ) ( 1 − 2 n + 1 ) + ⋯ + 1 n ! ⋅ ( 1 − 1 n + 1 ) ( 1 − 2 n + 1 ) ⋅ ⋅ ⋅ ( 1 − n − 1 n + 1 ) + 1 ( n + 1 ) ! ⋅ ( 1 − 1 n + 1 ) ( 1 − 2 n + 1 ) ⋯ ( 1 − n − 1 n + 1 ) ( 1 − n n + 1 ) > x n \begin{aligned} x_{n+1}& =\left(1+\frac1{n+1}\right)^{n+1} \\ &=1+1+\frac1{2!}\cdot\left(1-\frac1{n+1}\right)+\frac1{3!}\cdot\left(1-\frac1{n+1}\right)\left(1-\frac2{n+1}\right)+\cdots+ \\ &\frac1{n!}\cdot\left(1-\frac1{n+1}\right)\left(1-\frac2{n+1}\right)\cdot\cdot\cdot\left(1-\frac{n-1}{n+1}\right)+ \\ &\frac1{(n+1)!}\cdot\left(1-\frac1{n+1}\right)\left(1-\frac2{n+1}\right)\cdots\left(1-\frac{n-1}{n+1}\right)\left(1-\frac n{n+1}\right) \\ &\text{>}x_{n} \end{aligned} xn+1=(1+n+11)n+1=1+1+2!1(1n+11)+3!1(1n+11)(1n+12)++n!1(1n+11)(1n+12)(1n+1n1)+(n+1)!1(1n+11)(1n+12)(1n+1n1)(1n+1n)>xn

由单调有界数列必有极限可知,数列 x n = ( 1 + 1 n ) n x_n=\left(1+\frac1n\right)^n xn=(1+n1)n的极限一定存在。记此极限为 e e e
对于实数 x x x ,则总存在整数 n n n ,使得 n ⩽ x ⩽ n + 1 n\leqslant x\leqslant n+1 nxn+1

则有 ( 1 + 1 n + 1 ) n < ( 1 + 1 x ) x < ( 1 + 1 n ) n + 1 \text{则有}\left(1+\frac{1}{n+1}\right)^n<\left(1+\frac{1}{x}\right)^x<\left(1+\frac{1}{n}\right)^{n+1} 则有(1+n+11)n<(1+x1)x<(1+n1)n+1

lim ⁡ n → ∞ ( 1 + 1 n + 1 ) n = lim ⁡ n → ∞ ( 1 + 1 n + 1 ) n + 1 ( 1 + 1 n + 1 ) = lim ⁡ x → ∞ ( 1 + 1 n + 1 ) n + 1 lim ⁡ x → ∞ ( 1 + 1 n + 1 ) \lim_{n\to\infty}\left(1+\frac1{n+1}\right)^n=\lim_{n\to\infty}\frac{\left(1+\frac1{n+1}\right)^{n+1}}{\left(1+\frac1{n+1}\right)}=\frac{\lim_{x\to\infty}\left(1+\frac1{n+1}\right)^{n+1}}{\lim_{x\to\infty}\left(1+\frac1{n+1}\right)} nlim(1+n+11)n=nlim(1+n+11)(1+n+11)n+1=limx(1+n+11)limx(1+n+11)n+1

= e 1 + 0 = e =\frac e{1+0}=e =1+0e=e

lim ⁡ n → ∞ ( 1 + 1 n ) n + 1 = lim ⁡ n → ∞ ( ( 1 + 1 n ) n ( 1 + 1 n ) ) \lim_{n\to\infty}\left(1+\frac1n\right)^{n+1}=\lim_{n\to\infty}\left(\left(1+\frac1n\right)^n\left(1+\frac1n\right)\right) limn(1+n1)n+1=limn((1+n1)n(1+n1))

= lim ⁡ n → ∞ ( 1 + 1 n ) n lim ⁡ n → ∞ ( 1 + 1 n ) = e ⋅ ( 1 + 0 ) = e \begin{aligned} &=\lim_{n\to\infty}\left(1+\frac1n\right)^n\lim_{n\to\infty}\left(1+\frac1n\right) \\ &=e\cdot(1+0) \\ &=e \end{aligned} =nlim(1+n1)nnlim(1+n1)=e(1+0)=e
根据两边夹定理,函数 f ( x ) = lim ⁡ x → ∞ ( 1 + 1 x ) x f(x)=\lim_{x\to\infty}\left(1+\frac1x\right)^x f(x)=limx(1+x1)x的极限存在,为e

1.2 无穷大与无穷小

1.2.1 概念

1.2.1.1 无穷小的概念

若 lim ⁡ x → x 0 f ( x ) = 0 , 则称 f ( x ) 为 x → x 0 时的无穷小量 ( 或无穷小 ) . 记作  α ( x ) , β ( x ) 等 . \begin{aligned}&\text{若}\lim_{x\to x_0}f\left(x\right)=0,\text{则称}f\left(x\right)\text{为}x\to x_0\text{时的无穷小量}\left(\text{或无穷小}\right).\\&\text{记作 }\alpha(x),\beta(x)\text{等}.\end{aligned} xx0limf(x)=0,则称f(x)xx0时的无穷小量(或无穷小).记作 α(x),β(x).
定理1: lim ⁡ x → x 0 f ( x ) = A ⇔ f ( x ) = A + α ( x ) \lim_{x\to x_0}f(x)=A\Leftrightarrow f(x)=A+\alpha(x) limxx0f(x)=Af(x)=A+α(x)
定理2:

  1. 有限个无穷小的和为无穷小
  2. 有限个无穷小的积为无穷小
  3. 无穷小与有界函数的积仍为无穷小
1.2.1.2 无穷大的概念

f ( x ) f(x) f(x) x 0 x_{0} x0某去心邻域 U ˚ ( x 0 ) \mathring{U}(x_{0}) U˚(x0)有定义, ∀ > 0 , ∃ δ > 0 \forall >0,\exists\delta>0 >0,δ>0,当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ 时, ∣ f ( x ) ∣ > M . |f(x)|>M. f(x)>M. 则称 f ( x ) f(x) f(x) x → x 0 x\to x_0 xx0时的
无穷大量(或无穷大).
记作 lim x → x 0 x\to x_{0} xx0 f ( x ) = ∞ f(x)=\infty f(x)=
定理:

  1. 无穷大的积仍为无穷大
  2. 无穷大的和不一定为无穷大
1.2.1.3 无穷小阶的概念

定义3 (无穷小的阶) 设 α ( x ) \alpha(x) α(x) β ( x ) \beta(x) β(x) 是自变量 x 在同一变化趋势下的两个无穷小,且 β ( x ) ≠ 0 \beta(x)\neq0 β(x)=0

(1) 若lim α ( x ) β ( x ) = 0 \frac{\alpha(x)}{\beta(x)}=0 β(x)α(x)=0,则称 α ( x ) \alpha(x) α(x) β ( x ) \beta(x) β(x) 的高阶无穷小,记作 α ( x ) = o [ β ( x ) ] \alpha(x)=o\left[\beta(x)\right] α(x)=o[β(x)]
(2) 若 lim α ( x ) β ( x ) = C ≠ 0 \frac{\alpha(x)}{\beta(x)}=C\neq0 β(x)α(x)=C=0,则称 α ( x ) \alpha(x) α(x) β ( x ) \beta(x) β(x) 为同阶无穷小;
(3)若 lim α ( x ) β ( x ) = 1 \frac{\alpha(x)}{\beta(x)}=1 β(x)α(x)=1,则称 α ( x ) \alpha(x) α(x) β ( x ) \beta(x) β(x)为等价无穷小,记作 α ( x ) ∼ β ( x ) ; \alpha(x)\sim\beta(x); α(x)β(x); (3)若lim .
(4)若 lim ⁡ [ 0 , 0 , 1 ] α ( x ) ( x − ) k = C ≠ 0 , ( k > 0 ) \lim_{[0,0,1]}\frac{\alpha(x)}{(x-)^k}=C\neq0,\quad(k>0) lim[0,0,1](x)kα(x)=C=0,(k>0),则称 α ( x ) \alpha(x) α(x) β ( x ) \beta(x) β(x) k k k 阶无穷小.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1521528.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

未来洞见:亚信安慧AntDB在数据可靠性上的愿景

和国外成熟稳定的商业数据库相比&#xff0c;国产数据库在性能、稳定性、生态等方面存在一定差距&#xff0c;我国数据库的自主可控替换&#xff0c;也不是简单的以库换库&#xff0c;而是用新体系替换旧体系&#xff0c;在架构、研发、上线、运维等方面&#xff0c;全面降低对…

Pyqt5中,QGroupBox组件标题字样(标题和内容样式分开设置)相对于解除继承

Python代码示例&#xff1a; import sys from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QGroupBox, QLabelclass MyApp(QWidget):def __init__(self):super().__init__()# 创建一个 QVBoxLayout 实例layout QVBoxLayout()# 创建 QGroupBox 实例self.grou…

系统分析与设计作业 --- 酒店管理系统(2~3周)

第二周 作业一&#xff1a; &#xff08;1&#xff09;需求分析NABCD 我们的项目是一个酒店管理系统&#xff0c;所i对应的NABCD描述 NABCD是一种产品描述框架&#xff0c;用于全面阐述产品的各个方面。其中&#xff0c;N代表需求&#xff08;Need&#xff09;&#xff0c;描…

5_springboot_shiro_jwt_多端认证鉴权_禁用Cookie

1. Cookie是什么 ​ Cookie是一种在客户端&#xff08;通常是用户的Web浏览器&#xff09;和服务器之间进行状态管理的技术。当用户访问Web服务器时&#xff0c;服务器可以向用户的浏览器发送一个名为Cookie的小数据块。浏览器会将这个Cookie存储在客户端&#xff0c;为这个Co…

字符串分割(C++)

经常碰到字符串分割的问题&#xff0c;这里总结下&#xff0c;也方便我以后使用。 一、用strtok函数进行字符串分割 原型&#xff1a; char *strtok(char *str, const char *delim); 功能&#xff1a;分解字符串为一组字符串。 参数说明&#xff1a;str为要分解的字符串&am…

LeetCode每日一题 将有序数组转换为二叉搜索树(分治)

题目描述 给你一个整数数组 nums &#xff0c;其中元素已经按 升序 排列&#xff0c;请你将其转换为一棵平衡二叉搜索树。 示例 1&#xff1a; 输入&#xff1a;nums [-10,-3,0,5,9] 输出&#xff1a;[0,-3,9,-10,null,5] 解释&#xff1a;[0,-10,5,null,-3,null,9] 也将被视…

[RAM] RAM 突发传输(Burst ,Burst size, length) | Burst 读写过程与时序 精讲

主页&#xff1a; 元存储博客 文章目录 前言1. Burst 基本概念含义Burst Width &Burst Length 2. CPU Burst mode3. 总线 burst mode总线的仲裁总线突发传输时序 4. Burst Chop (突发终止)5. Burst Mode 应用什么时候用突发模式 总结 前言 在DMA&#xff08;直接内存访问&…

MD5算法:密码学中的传奇

title: MD5算法&#xff1a;密码学中的传奇 date: 2024/3/15 20:08:07 updated: 2024/3/15 20:08:07 tags: MD5起源算法原理安全分析优缺点比较技术改进示例代码应用趋势 MD5算法起源&#xff1a; MD5&#xff08;Message Digest Algorithm 5&#xff09;算法是由MIT的计算机…

Web框架盘点:好用又实用的技术解析

​随着2024年的临近&#xff0c;我们满怀热情地为新的一年制定计划&#xff0c;探索未来一年可以学习或实现的目标。此时是探索未来一年值得学习的框架、理解其功能和特点的最佳时机。我们将以2023年JavaScript新星为指南&#xff0c;力求保持客观公正的态度。对于每个值得关注…

调皮的String及多种玩法(下部)

&#x1f468;‍&#x1f4bb;作者简介&#xff1a;&#x1f468;&#x1f3fb;‍&#x1f393;告别&#xff0c;今天 &#x1f4d4;高质量专栏 &#xff1a;☕java趣味之旅 欢迎&#x1f64f;点赞&#x1f5e3;️评论&#x1f4e5;收藏&#x1f493;关注 &#x1f496;衷心的希…

修复 error Delete `␍` prettier/prettier 错误

修复 error Delete ␍ prettier/prettier 错误 问题背景报错信息报错原因解决办法修改CRLF----针对单个文件yarn run lint --fix 一键修复&#xff08;官方提供&#xff09; 问题背景 今天在使用 openapi 自动生成前端接口代码的时候&#xff0c;爆了一个类似 eslint 规范的错…

C/C++炸弹人游戏

参考书籍《啊哈&#xff0c;算法》&#xff0c;很有意思的一本算法书&#xff0c;小白也可以看懂&#xff0c;详细见书&#xff0c;这里只提供代码和运行结果。 这里用到的是枚举思想&#xff0c;还有更好地搜索做法。 如果大家有看不懂的地方或提出建议&#xff0c;欢迎评论区…

外包干了9天,技术退步明显。。。。。

先说一下自己的情况&#xff0c;本科生&#xff0c;2018年我通过校招踏入了南京一家软件公司&#xff0c;开始了我的职业生涯。那时的我&#xff0c;满怀热血和憧憬&#xff0c;期待着在这个行业中闯出一片天地。然而&#xff0c;随着时间的推移&#xff0c;我发现自己逐渐陷入…

Django之Cookie

Django之Cookie 目录 Django之Cookie介绍Django操作Cookie设置Cookie浏览器查看Cookie 获取Cookie设置超时Cookie注销Cookie 模拟登录验证登录验证装饰器登录验证装饰器-升级版 介绍 当我们上网使用社交媒体或者购物时&#xff0c;浏览器需要通过一种方式来记住我们。想象一下…

Java宝典-异常

目录 1. 异常的分类1.1 运行时异常1.2 编译时异常 2. 异常的抛出2.1 throw2.2 throws 3. 异常的捕获3.1 try-catch3.2 finally 4. 异常执行的过程5. 自定义异常 在Java中&#xff0c;异常(Exception)是指程序发生不正常的行为&#xff0c;异常其实就是一个一个的类。 1. 异常的…

算法-贪心-122. 糖果传递

题目 有 n个小朋友坐成一圈&#xff0c;每人有 a[i]个糖果。 每人只能给左右两人传递糖果。 每人每次传递一个糖果代价为 1。 求使所有人获得均等糖果的最小代价。 输入格式 第一行输入一个正整数 n&#xff0c;表示小朋友的个数。 接下来 n 行&#xff0c;每行一个整数…

数据结构 之 优先级队列(堆) (PriorityQueue)

&#x1f389;欢迎大家观看AUGENSTERN_dc的文章(o゜▽゜)o☆✨✨ &#x1f389;感谢各位读者在百忙之中抽出时间来垂阅我的文章&#xff0c;我会尽我所能向的大家分享我的知识和经验&#x1f4d6; &#x1f389;希望我们在一篇篇的文章中能够共同进步&#xff01;&#xff01;&…

langchain学习(十二)

Chat Messages | &#x1f99c;️&#x1f517; Langchain ChatMessageHistory&#xff1a;基类&#xff0c;保存HumanMessages、AIMessages from langchain.memory import ChatMessageHistory history ChatMessageHistory() history.add_user_message("hi!") his…

使用docker-compose管理freeswitch容器

概述 之前的文章我们介绍过如何将freeswitch做成docker镜像&#xff0c;也使用命令行模式正常启动了fs的docker容器。 但是当我们需要同时管理多个docker容器的时候&#xff0c;还是使用docker-compose更简单。 环境 CENTOS 7 docker engine&#xff1a;Version 25.0.3 D…

【深度学习与神经网络】MNIST手写数字识别1

简单的全连接层 导入相应库 import torch import numpy as np from torch import nn,optim from torch.autograd import Variable import matplotlib.pyplot as plt from torchvision import datasets, transforms from torch.utils.data import DataLoader读入数据并转为ten…