pytorch升级打怪(三)

news2025/1/9 1:28:26

数据集合数据加载器

  • 简介
  • 加载数据集
  • 迭代和可视化数据集
  • 为您的文件创建自定义数据集
    • ```__init__```
    • ```__len__```
    • ```__getitem__```
  • 准备您的数据以使用DataLoaders进行训练
  • 通过DataLoader进行遍载

简介

处理数据样本的代码可能会变得混乱且难以维护;理想情况下,我们希望我们的数据集代码与模型训练代码解耦,以提高可读性和模块化。PyTorch提供了两个数据原语:torch.utils.data.DataLoader和torch.utils.data.Dataset,允许您使用预加载的数据集以及您自己的数据。Dataset存储样本及其相应的标签,DataLoader在Dataset周围包装一个可以可以方便地访问样本。

PyTorch域库提供一些预加载的数据集(如FashionMNIST),该子类为torch.utils.data.Dataset,并实现特定于特定数据的功能。它们可用于原型和基准测试您的模型。您可以在这里找到它们:图像数据集、文本数据集和音频数据集

加载数据集

以下是如何从TorchVision加载Fashion-MNIST数据集的示例。Fashion-MNIST是Zalando文章图像的数据集,包括60,000个训练示例和10,000个测试示例。每个示例都包括一个28×28的灰度图像和来自10个班级之一的相关标签。

我们用以下参数加载FashionMNIST数据集:

  • root是存储火车/测试数据的路径,
  • train指定训练或测试数据集,
  • download=True如果root上没有数据,则从互联网上下载数据。
  • transform和target_transform指定功能和标签转换

import torch
from torch.utils.data import Dataset
from torchvision import datasets
from torchvision.transforms import ToTensor
import matplotlib.pyplot as plt


training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor()
)

test_data = datasets.FashionMNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor()
)


Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to data/FashionMNIST/raw/train-images-idx3-ubyte.gz

  0%|          | 0/26421880 [00:00<?, ?it/s]
  0%|          | 65536/26421880 [00:00<01:12, 363720.69it/s]
  1%|          | 229376/26421880 [00:00<00:38, 682917.83it/s]
  3%|3         | 917504/26421880 [00:00<00:12, 2109774.93it/s]
 12%|#2        | 3211264/26421880 [00:00<00:03, 6286038.17it/s]
 28%|##8       | 7438336/26421880 [00:00<00:01, 14838321.45it/s]
 41%|####      | 10747904/26421880 [00:00<00:00, 16477772.21it/s]
 57%|#####7    | 15138816/26421880 [00:01<00:00, 22904288.96it/s]
 71%|#######   | 18644992/26421880 [00:01<00:00, 21979092.87it/s]
 92%|#########2| 24346624/26421880 [00:01<00:00, 30077676.52it/s]
100%|##########| 26421880/26421880 [00:01<00:00, 18141478.99it/s]
Extracting data/FashionMNIST/raw/train-images-idx3-ubyte.gz to data/FashionMNIST/raw

Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz to data/FashionMNIST/raw/train-labels-idx1-ubyte.gz

  0%|          | 0/29515 [00:00<?, ?it/s]
100%|##########| 29515/29515 [00:00<00:00, 327742.46it/s]
Extracting data/FashionMNIST/raw/train-labels-idx1-ubyte.gz to data/FashionMNIST/raw

Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz to data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz

  0%|          | 0/4422102 [00:00<?, ?it/s]
  1%|1         | 65536/4422102 [00:00<00:11, 363330.31it/s]
  5%|5         | 229376/4422102 [00:00<00:06, 684189.84it/s]
 21%|##1       | 950272/4422102 [00:00<00:01, 2195763.19it/s]
 87%|########6 | 3833856/4422102 [00:00<00:00, 7634326.84it/s]
100%|##########| 4422102/4422102 [00:00<00:00, 6105857.14it/s]
Extracting data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz to data/FashionMNIST/raw

Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz to data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz

  0%|          | 0/5148 [00:00<?, ?it/s]
100%|##########| 5148/5148 [00:00<00:00, 37228063.78it/s]
Extracting data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz to data/FashionMNIST/raw

迭代和可视化数据集

我们可以像列表一样手动索引Datasets:training_data[index]。我们使用matplotlib在训练数据中可视化一些样本。


labels_map = {
    0: "T-Shirt",
    1: "Trouser",
    2: "Pullover",
    3: "Dress",
    4: "Coat",
    5: "Sandal",
    6: "Shirt",
    7: "Sneaker",
    8: "Bag",
    9: "Ankle Boot",
}
figure = plt.figure(figsize=(8, 8))
cols, rows = 3, 3
for i in range(1, cols * rows + 1):
    sample_idx = torch.randint(len(training_data), size=(1,)).item()
    img, label = training_data[sample_idx]
    figure.add_subplot(rows, cols, i)
    plt.title(labels_map[label])
    plt.axis("off")
    plt.imshow(img.squeeze(), cmap="gray")
plt.show()

在这里插入图片描述

为您的文件创建自定义数据集

自定义数据集类必须实现三个函数:

__init__、__len__和__getitem__

。看看这个实现;FashionMNIST图像存储在目录img_dir中,其标签单独存储在CSV文件annotations_file。

在接下来的章节中,我们将分解每个函数中发生的事情。


import os
import pandas as pd
from torchvision.io import read_image

class CustomImageDataset(Dataset):
    def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
        self.img_labels = pd.read_csv(annotations_file)
        self.img_dir = img_dir
        self.transform = transform
        self.target_transform = target_transform

    def __len__(self):
        return len(self.img_labels)

    def __getitem__(self, idx):
        img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
        image = read_image(img_path)
        label = self.img_labels.iloc[idx, 1]
        if self.transform:
            image = self.transform(image)
        if self.target_transform:
            label = self.target_transform(label)
        return image, label

__init__

实例化数据集对象时,__init__函数运行一次。我们初始化包含图像、注释文件和两个转换的目录(下一节将更详细地介绍)。


def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
    self.img_labels = pd.read_csv(annotations_file)
    self.img_dir = img_dir
    self.transform = transform
    self.target_transform = target_transform

__len__

__len__函数返回我们数据集中的样本数。


def __len__(self):
    return len(self.img_labels)

__getitem__

__getitem__函数加载并返回给定索引idx的数据集的样本。基于索引,它识别图像在磁盘上的位置,使用read_image将其转换为张量,从self.img_labels中的csv数据中检索相应的标签,调用其上的转换函数(如果适用),并在元组中返回张量图像和相应标签。


def __getitem__(self, idx):
    img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
    image = read_image(img_path)
    label = self.img_labels.iloc[idx, 1]
    if self.transform:
        image = self.transform(image)
    if self.target_transform:
        label = self.target_transform(label)
    return image, label

准备您的数据以使用DataLoaders进行训练

Dataset检索我们数据集的功能,并一次标记一个样本。在训练模型时,我们通常希望以“迷你批次”传递样本,在每个时代重新洗牌数据以减少模型过拟合,并使用Pythonmultiprocessing来加快数据检索速度。

DataLoader是一个可以在一个简单的API中为我们抽象这种复杂性的可以进行的。

from torch.utils.data import DataLoader

train_dataloader = DataLoader(training_data, batch_size=64, shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=64, shuffle=True)

通过DataLoader进行遍载

我们已经将该数据集加载到DataLoader,可以根据需要迭代数据集。下面的每个迭代都会返回一批train_features和train_labels(分别包含batch_size=64特征和标签)。因为我们指定了shuffle=True,在我们遍复所有批次后,数据被洗牌(为了更精细地控制数据加载顺序,请查看采样器)。


# Display image and label.
train_features, train_labels = next(iter(train_dataloader))
print(f"Feature batch shape: {train_features.size()}")
print(f"Labels batch shape: {train_labels.size()}")
img = train_features[0].squeeze()
label = train_labels[0]
plt.imshow(img, cmap="gray")
plt.show()
print(f"Label: {label}")

在这里插入图片描述

Feature batch shape: torch.Size([64, 1, 28, 28])
Labels batch shape: torch.Size([64])
Label: 5

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1520510.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++笔记:从零开始一步步手撕高阶数据结构AVL树

文章目录 高度平衡二叉搜索树实现一颗AVL树结点与树的描述——定义类AVL树的插入操作步骤1&#xff1a;按照二叉搜索树的方法插入结点步骤2&#xff1a;自底向上调整平衡因子步骤3&#xff1a;触发旋转操作&#xff08;AVL树平衡的精髓&#xff09;右单旋左单旋左右双旋右左双旋…

AtomoVideo:AIGC赋能下的电商视频动效生成

✍&#x1f3fb; 本文作者&#xff1a;凌潼、依竹、桅桔、逾溪 1. 概述 当今电商领域&#xff0c;内容营销的形式正日趋多样化&#xff0c;视频内容以其生动鲜明的视觉体验和迅捷高效的信息传播能力&#xff0c;为商家创造了新的机遇。消费者对视频内容的偏好驱动了视频创意供给…

C语言基础之结构体

文章目录 一、结构体1、结构体概述2、结构体类型的定义方式&#xff08;1&#xff09;先定义结构体类型&#xff0c;再定义结构体变量&#xff08;2&#xff09;结构体类型、变量同时定义&#xff08;3&#xff09;一次性结构体 3、结构体成员的初始化(1)结构体初始化(2)清空结…

linux用git拉取我云端以及git处理冲突

拉取后切换一个跟云端分支(dev)一样的 git branch --set-upstream-toorigin/dev dev 之后就同步了 A在dev分支写了iii,提交 B在dev分支写了hhh,提交,冲突 怎么修改,B把云端的拉下来,随便改改就行

找准方向选CRM客户管理系统!2023年排行榜推荐

本文将为大家带来2023有哪些好用CRM客户管理系统&#xff1f;CRM系统排行榜基于品牌知名度、功能、产品实力、系统稳定性、用户体量等多重因素考量。其中Zoho CRM、红圈CRM等产品市场表现优异入选此次榜单。 1.Zoho CRM 公司成立时间&#xff1a;1996年 Zoho&#xff08;卓豪…

你为什么是你,而不是别人?认识人格的力量

你为什么是你&#xff0c;而不是别人&#xff1f;让你做自我介绍&#xff0c;你会怎么描述自己呢&#xff1f; 人格心理学是心理学的一门重要分支学科。探求、描述和揭示个体思想、情绪及行为的独特模式&#xff0c;综合个人与环境诸多影响因素&#xff0c;对现实社会中的个人作…

jenkins部署go应用 基于docker-compose

丢弃旧的的构建 github 拉取代码 指定go的编译版本 安装插件 拉取代码是排除指定的配置文件 比如 conf/config.yaml 文件 填写配置文件内容 比如测试环境一些主机信息 等 可以配置里面 构建的时候选择此文件替换开发提交的配置文件。。。。 编写docker-compose 文件 docker…

【PythonCode】力扣Leetcode6~10题Python版

【PythonCode】力扣Leetcode6~10题Python版 前言 力扣Leetcode是一个集学习、刷题、竞赛等功能于一体的编程学习平台&#xff0c;很多计算机相关专业的学生、编程自学者、IT从业者在上面学习和刷题。 在Leetcode上刷题&#xff0c;可以选择各种主流的编程语言&#xff0c;如C、…

渐开线花键不是齿轮?

在和一位小伙伴交流时&#xff0c;他认为齿轮和花键不一样&#xff0c;那花键是不是齿轮呢&#xff1f;老师傅们可以绕开了&#xff0c;我觉得对于一些平时接刚刚接触齿轮&#xff0c;或者很少接触的朋友来说&#xff0c;还是有必要聊一聊这个话题。 首先这个问题并不严谨&…

包冲突解决之-invalid constant type: 18

背景 现象一&#xff1a;引入了一个包A&#xff0c;服务突然起不来了&#xff0c;后台有报错信息&#xff0c;Caused by: org.springframework.beans.factory.NoSuchBeanDefinitionException: No qualifying bean of type xxx available: expected at least 1 bean which quali…

CSS扩展选择器

文章目录 1. 并集选择器2. 交集选择器3. 后代选择器4. 子代选择器5. 兄弟选择器5.1. 相邻兄弟选择器5.2. 通用兄弟选择器 6. 属性选择器7. 伪类选择器7.1. 动态伪类7.2. 结构伪类7.3. 否定伪类 8. 伪元素选择器9. Google 改进案例 1. 并集选择器 选中多个选择器对应的元素。一…

Day44-sersync企业实时复制实战

Day44-sersync企业实时复制实战 1. sersync实时复制工具介绍1.1 sersync工具简介1.2 sersync特点1.3 sersync图解原理1.4 sersyncrsync实时复制方案项目实践1.4.1 图解项目方案架构及实现原理1.4.2 确保远程数据传输服务部署完成1.4.3 检查当前系统nfs01是否支持inotify实时监控…

智慧城市:提升城市治理能力的关键

目录 一、智慧城市的概念及特点 二、智慧城市在提升城市治理能力中的应用实践 1、智慧交通&#xff1a;提高交通治理效率 2、智慧政务&#xff1a;提升政府服务水平 3、智慧环保&#xff1a;加强环境监测与治理 4、智慧安防&#xff1a;提高城市安全水平 三、智慧城市在…

基于springboot的七彩云南文化旅游网站的设计与实现(论文+源码)_kaic

摘 要 传统办法管理信息首先需要花费的时间比较多&#xff0c;其次数据出错率比较高&#xff0c;而且对错误的数据进行更改也比较困难&#xff0c;最后&#xff0c;检索数据费事费力。因此&#xff0c;在计算机上安装七彩云南文化旅游网站软件来发挥其高效地信息处理的作用&am…

sqllab第二十三关通关笔记

知识点&#xff1a; mysqli_query() 返回值为资源型或布尔型如果内容为查询语句则返回资源型数据&#xff1b;如果内容为插入、更新、删除等语句则返回布尔类型结果mysql_fetch_array() 从结果集中取出一行作为关联数组或数字数组输入内容为指定查询的结果集单引号闭合绕过联…

【测试开发学习历程】Docker入门

前言&#xff1a; Linux命令到上一篇博文就可以告一个段落了哦 ~ ~ 今天初步学习在测试中很重要的东西&#xff1a;Docker 目录 1 Docker概述 1.1 Docker产生的背景&#xff1f; 1.2 Docker的理念&#xff1f; 1.3 Docker的优势 1.3.1 传统的虚拟机 1.3.2 容器化虚拟技…

异次元发卡源码系统/荔枝发卡V3.0二次元风格发卡网全开源源码

– 支付系统&#xff0c;已经接入易支付及Z支付免签接口。 – 云更新&#xff0c;如果系统升级新版本&#xff0c;你无需进行繁琐操作&#xff0c;只需要在你的店铺后台就可以无缝完成升级。 – 商品销售&#xff0c;支持商品配图、会员价、游客价、邮件通知、卡密预选&#…

数据库 | MYSQL这个复杂系统如何上手?

当你不知道从何入手研究或解决一个复杂系统的问题时&#xff0c;通常意味着你没有找到合适的切入点或者缺乏对系统整体和细节之间联系的理解。在这种情况下&#xff0c;一个有用的策略是寻找系统的基本原理或构成要素。 小时候&#xff0c;你可能也玩过玩具四驱车。有的四驱车…

Github 2024-03-16 Rust开源项目日报 Top10

根据Github Trendings的统计,今日(2024-03-16统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Rust项目10TypeScript项目2Go项目1RustDesk: 用Rust编写的开源远程桌面软件 创建周期:1218 天开发语言:Rust, Dart协议类型:GNU Affero Gene…

OCP NVME SSD规范解读-12.Telemetry日志要求

以NVME SSD为例&#xff0c;通常大家想到的是观察SMAR-log定位异常&#xff0c;但是这个信息在多数情况下无法只能支撑完整的定位链路。 定位能力的缺失和低效是数据中心问题解决最大的障碍。 为了解决这个问题&#xff0c;Meta的做法是推进OCP组织加入延迟记录页面。同时NVME协…