9种分布式ID生成之美团(Leaf)实战

news2024/11/16 6:05:14

​​​​​

前几天写过一篇《一口气说出 9种 分布式ID生成方式,面试官有点懵了》,里边简单的介绍了九种分布式ID生成方式,但是对于像美团(Leaf)滴滴(Tinyid)百度(uid-generator)都是一笔带过。而通过读者留言发现,大家普遍对他们哥三更感兴趣,所以后边会结合实战,详细的对三种分布式ID生成器学习,今天先啃下美团(Leaf)

不了解分布式ID的同学,先行去看《一口气说出 9种 分布式ID生成方式,面试官有点懵了》温习一下基础知识,这里就不再赘述了

美团(Leaf)

Leaf是美团推出的一个分布式ID生成服务,名字取自德国哲学家、数学家莱布尼茨的一句话:“There are no two identical leaves in the world.”(“世界上没有两片相同的树叶”),取个名字都这么有寓意,美团程序员牛掰啊!

Leaf的优势:高可靠低延迟全局唯一等特点。

目前主流的分布式ID生成方式,大致都是基于数据库号段模式雪花算法(snowflake),而美团(Leaf)刚好同时兼具了这两种方式,可以根据不同业务场景灵活切换。

接下来结合实战,详细的介绍一下LeafLeaf-segment号段模式Leaf-snowflake模式

一、 Leaf-segment号段模式

Leaf-segment号段模式是对直接用数据库自增ID充当分布式ID的一种优化,减少对数据库的频率操作。相当于从数据库批量的获取自增ID,每次从数据库取出一个号段范围,例如 (1,1000] 代表1000个ID,业务服务将号段在本地生成1~1000的自增ID并加载到内存.。

大致的流程入下图所示:
在这里插入图片描述
号段耗尽之后再去数据库获取新的号段,可以大大的减轻数据库的压力。对max_id字段做一次update操作,update max_id= max_id + step,update成功则说明新号段获取成功,新的号段范围是(max_id ,max_id +step]。

由于依赖数据库,我们先设计一下表结构:

CREATE TABLE `leaf_alloc` (
  `biz_tag` varchar(128) NOT NULL DEFAULT '' COMMENT '业务key',
  `max_id` bigint(20) NOT NULL DEFAULT '1' COMMENT '当前已经分配了的最大id',
  `step` int(11) NOT NULL COMMENT '初始步长,也是动态调整的最小步长',
  `description` varchar(256) DEFAULT NULL COMMENT '业务key的描述',
  `update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '数据库维护的更新时间',
  PRIMARY KEY (`biz_tag`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

预先插入一条测试的业务数据

INSERT INTO `leaf_alloc` (`biz_tag`, `max_id`, `step`, `description`, `update_time`) VALUES ('leaf-segment-test', '0', '10', '测试', '2020-02-28 10:41:03');
  • 1
  • biz_tag:针对不同业务需求,用biz_tag字段来隔离,如果以后需要扩容时,只需对biz_tag分库分表即可

  • max_id:当前业务号段的最大值,用于计算下一个号段

  • step:步长,也就是每次获取ID的数量

  • description:对于业务的描述,没啥好说的

将Leaf项目下载到本地:https://github.com/Meituan-Dianping/Leaf

修改一下项目中的leaf.properties文件,添加数据库配置

leaf.name=com.sankuai.leaf.opensource.test
leaf.segment.enable=true
leaf.jdbc.url=jdbc:mysql://127.0.0.1:3306/xin-master?useUnicode=true&characterEncoding=utf8
leaf.jdbc.username=junkang
leaf.jdbc.password=junkang

leaf.snowflake.enable=false

注意leaf.snowflake.enable 与 leaf.segment.enable 是无法同时开启的,否则项目将无法启动。

配置相当的简单,直接启动LeafServerApplication后就OK了,接下来测试一下,leaf是基于Http请求的发号服务, LeafController 中只有两个方法,一个号段接口,一个snowflake接口,key就是数据库中预先插入的业务biz_tag


@RestController
public class LeafController {
    private Logger logger = LoggerFactory.getLogger(LeafController.class);

    @Autowired
    private SegmentService segmentService;
    @Autowired
    private SnowflakeService snowflakeService;

    /**
     * 号段模式
     * @param key
     * @return
     */
    @RequestMapping(value = "/api/segment/get/{key}")
    public String getSegmentId(@PathVariable("key") String key) {
        return get(key, segmentService.getId(key));
    }

    /**
     * 雪花算法模式
     * @param key
     * @return
     */
    @RequestMapping(value = "/api/snowflake/get/{key}")
    public String getSnowflakeId(@PathVariable("key") String key) {
        return get(key, snowflakeService.getId(key));
    }

    private String get(@PathVariable("key") String key, Result id) {
        Result result;
        if (key == null || key.isEmpty()) {
            throw new NoKeyException();
        }
        result = id;
        if (result.getStatus().equals(Status.EXCEPTION)) {
            throw new LeafServerException(result.toString());
        }
        return String.valueOf(result.getId());
    }
}

访问:http://127.0.0.1:8080/api/segment/get/leaf-segment-test,结果正常返回,感觉没毛病,但当查了一下数据库表中数据时发现了一个问题。
在这里插入图片描述
在这里插入图片描述
通常在用号段模式的时候,取号段的时机是在前一个号段消耗完的时候进行的,可刚刚才取了一个ID,数据库中却已经更新了max_id,也就是说leaf已经多获取了一个号段,这是什么鬼操作?
在这里插入图片描述

Leaf为啥要这么设计呢?

Leaf 希望能在DB中取号段的过程中做到无阻塞!

当号段耗尽时再去DB中取下一个号段,如果此时网络发生抖动,或者DB发生慢查询,业务系统拿不到号段,就会导致整个系统的响应时间变慢,对流量巨大的业务,这是不可容忍的。

所以Leaf在当前号段消费到某个点时,就异步的把下一个号段加载到内存中。而不需要等到号段用尽的时候才去更新号段。这样做很大程度上的降低了系统的风险。

那么某个点到底是什么时候呢?

这里做了一个实验,号段设置长度为step=10max_id=1
在这里插入图片描述
当我拿第一个ID时,看到号段增加了,1/10
在这里插入图片描述
在这里插入图片描述
当我拿第三个Id时,看到号段又增加了,3/10
在这里插入图片描述
在这里插入图片描述
Leaf采用双buffer的方式,它的服务内部有两个号段缓存区segment。当前号段已消耗10%时,还没能拿到下一个号段,则会另启一个更新线程去更新下一个号段。

简而言之就是Leaf保证了总是会多缓存两个号段,即便哪一时刻数据库挂了,也会保证发号服务可以正常工作一段时间。

在这里插入图片描述
通常推荐号段(segment)长度设置为服务高峰期发号QPS的600倍(10分钟),这样即使DB宕机,Leaf仍能持续发号10-20分钟不受影响。

优点:

  • Leaf服务可以很方便的线性扩展,性能完全能够支撑大多数业务场景。
  • 容灾性高:Leaf服务内部有号段缓存,即使DB宕机,短时间内Leaf仍能正常对外提供服务。

缺点:

  • ID号码不够随机,能够泄露发号数量的信息,不太安全。
  • DB宕机会造成整个系统不可用(用到数据库的都有可能)。
二、Leaf-snowflake

Leaf-snowflake基本上就是沿用了snowflake的设计,ID组成结构:正数位(占1比特)+ 时间戳(占41比特)+ 机器ID(占5比特)+ 机房ID(占5比特)+ 自增值(占12比特),总共64比特组成的一个Long类型。

Leaf-snowflake不同于原始snowflake算法地方,主要是在workId的生成上,Leaf-snowflake依靠Zookeeper生成workId,也就是上边的机器ID(占5比特)+ 机房ID(占5比特)。Leaf中workId是基于ZooKeeper的顺序Id来生成的,每个应用在使用Leaf-snowflake时,启动时都会都在Zookeeper中生成一个顺序Id,相当于一台机器对应一个顺序节点,也就是一个workId。

在这里插入图片描述
Leaf-snowflake启动服务的过程大致如下:

  • 启动Leaf-snowflake服务,连接Zookeeper,在leaf_forever父节点下检查自己是否已经注册过(是否有该顺序子节点)。
  • 如果有注册过直接取回自己的workerID(zk顺序节点生成的int类型ID号),启动服务。
  • 如果没有注册过,就在该父节点下面创建一个持久顺序节点,创建成功后取回顺序号当做自己的workerID号,启动服务。

Leaf-snowflake对Zookeeper是一种弱依赖关系,除了每次会去ZK拿数据以外,也会在本机文件系统上缓存一个workerID文件。一旦ZooKeeper出现问题,恰好机器出现故障需重启时,依然能够保证服务正常启动。

启动Leaf-snowflake模式也比较简单,起动本地ZooKeeper,修改一下项目中的leaf.properties文件,关闭leaf.segment模式,启用leaf.snowflake模式即可。

leaf.segment.enable=false
#leaf.jdbc.url=jdbc:mysql://127.0.0.1:3306/xin-master?useUnicode=true&characterEncoding=utf8
#leaf.jdbc.username=junkang
#leaf.jdbc.password=junkang

leaf.snowflake.enable=true
leaf.snowflake.zk.address=127.0.0.1
leaf.snowflake.port=2181
    /**
     * 雪花算法模式
     * @param key
     * @return
     */
    @RequestMapping(value = "/api/snowflake/get/{key}")
    public String getSnowflakeId(@PathVariable("key") String key) {
        return get(key, snowflakeService.getId(key));
    }

测试一下,访问:http://127.0.0.1:8080/api/snowflake/get/leaf-segment-test
在这里插入图片描述
优点:

  • ID号码是趋势递增的8byte的64位数字,满足上述数据库存储的主键要求。

缺点:

  • 依赖ZooKeeper,存在服务不可用风险(实在不知道有啥缺点了)
三、Leaf监控

请求地址:http://127.0.0.1:8080/cache

针对服务自身的监控,Leaf提供了Web层的内存数据映射界面,可以实时看到所有号段的下发状态。比如每个号段双buffer的使用情况,当前ID下发到了哪个位置等信息都可以在Web界面上查看。

在这里插入图片描述

总结

对于Leaf具体使用哪种模式,还是根据具体的业务场景使用,本文并没有对Leaf源码做过多的分析,因为Leaf 代码量简洁很好阅读。后续还会把其他几种分布式ID生成器,依次结合实战介绍给大家,欢迎大家关注。


今天就说这么多,如果本文对您有一点帮助,希望能得到您一个点赞👍哦

您的认可才是我写作的动力!

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1517464.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

mac【启动elasticsearch报错:can not run elasticsearch as root

mac【启动elasticsearch报错:can not run elasticsearch as root 问题原因 es默认不能用root用户启动,生产环境建议为elasticsearch创建用户。 解决方案 为elaticsearch创建用户并赋予相应权限。 尝试了以下命令创建用户,adduser esh 和u…

【计算机图形学】End-to-End Affordance Learning for Robotic Manipulation

对RLAfford:End-to-End Affordance Learning for Robotic Manipulation的简单理解 1. 为什么要做这件事 在交互环境中学习如何操纵3D物体是RL中的挑战性问题。很难去训练出一个能够泛化到具有不同语义类别、不同几何形状和不同功能物体上的策略。 Visual Afforda…

ISIS多区域实验简述

为支持大型路由网络,IS-IS在路由域内采用两级分层结构。 IS-IS网络中三种级别的路由设备:将Level-1路由设备部署在区域内,Level-2路由设备部署在区域间,Level-1-2路由设备部署在Level-1和Level-2路由设备的中间。 实验拓扑图&…

阿里云-云服务器ECS新手如何建网站?

租阿里云服务器一年要多少钱? 不同类型的服务器有不同的价格。 以ECS计算型c5为例:2核4G-1年518.40元,4核8G-1年948.00元。 阿里云ECS云服务器租赁价格由三部分组成: 也就是说,云服务器配置成本磁盘价格网络宽带价格…

大语言模型RAG-langchain models (二)

大语言模型RAG-langchain models (二) 往期文章:大语言模型RAG-技术概览 (一) 文章目录 大语言模型RAG-langchain models (二)**往期文章:[大语言模型RAG-技术概览 (一)](https://blog.csdn.net/tangbiubiu/article/details/136651625)**核心模块总览Mod…

lab3090连接

淘宝安装包,镜像包放在了F盘,文件夹名为“torch” 远程连接服务器 服务器,192.168.7.194,端口1324,账号,llf,密码123456 进入容器: docker attach llf_pytorch 创建后端jupyte…

【Claude 3】关于注册Claude 3模型的操作演示

文章目录 1. 登录Claude URL2. 海外手机号码验证3. 获取手机验证码4. 输入Claude用户名称5. 同意确认使用协议6. 点击去开始体验7. 注册登录成功8. 重新登录进入Claude9. 参考链接PS:所遇问题:⚠️注册即封号!!! 1. 登…

Redis 除了做缓存,还能做什么?

分布式锁:通过 Redis 来做分布式锁是一种比较常见的方式。通常情况下,我们都是基于 Redisson 来实现分布式锁。关于 Redis 实现分布式锁的详细介绍,可以看我写的这篇文章:分布式锁详解open in new window 。限流:一般是…

机试:蛇形矩阵

问题描述: 代码示例: //蛇形矩阵 #include <bits/stdc.h> using namespace std;int main(){int n;cout << "输入样例" << endl; cin >> n;int k 1; for(int i 0; i < n; i){if( i %2 0){//单数行for(int j 0; j < n; j){ cout &…

Linux本地部署开源AI的PDF工具—Stirling PDF并实现公网随时访问

文章目录 1. 安装Docker2. 本地安装部署StirlingPDF3. Stirling-PDF功能介绍4. 安装cpolar内网穿透5. 固定Stirling-PDF公网地址 本篇文章我们将在Linux上使用Docker在本地部署一个开源的PDF工具——Stirling PDF&#xff0c;并且结合cpolar的内网穿透实现公网随时随地访问。 S…

88. 合并两个有序数组 (Swift版本)

题目 给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2&#xff0c;另有两个整数 m 和 n &#xff0c;分别表示 nums1 和 nums2 中的元素数目。 请你 合并 nums2 到 nums1 中&#xff0c;使合并后的数组同样按 非递减顺序 排列。 注意&#xff1a;最终&#xff0c;合并…

Java高级编程—泛型

文章目录 1.为什么要有泛型 (Generic)1.1 泛型的概念1.2 使用泛型后的好处 2.在集合中使用泛型3.自定义泛型结构3.1 自定义泛型类、泛型接口3.2 自定义泛型方法 4.泛型在继承上的体现5.通配符的使用5.1 基本使用5.2 有限制的通配符的使用 1.为什么要有泛型 (Generic) Java中的…

为什么我接不到大单?

以前的领导创业多年&#xff0c;今天找我聊了一下想让我跟他一起做点事情&#xff0c;聊了一下我的现状&#xff0c;突然让我明白为何我一直都接不到大单了 说起来也不是完全没有好的机会&#xff0c;貌似有点像“公交车定律”&#xff0c;当我很忙碌的时候订单一个接一个&…

IP在网络通信中的重要作用

IP&#xff0c;全称Internet Protocol&#xff0c;即网际互连协议&#xff0c;是TCP/IP体系中的网络层协议。IP作为整个TCP/IP协议族的核心&#xff0c;是构成互联网的基础。它的作用重大且深远&#xff0c;下面将详细阐述IP的定义及其在网络通信中的重要作用。 首先&#xff0…

LVGL移植到ARM开发板(GEC6818开发板)

LVGL移植到ARM开发板&#xff08;GEC6818开发板&#xff09; 一、LVGL概述 LVGL&#xff08;Light and Versatile Graphics Library&#xff09;是一个开源的图形用户界面库&#xff0c;旨在提供轻量级、可移植、灵活和易于使用的图形用户界面解决方案。 它适用于嵌入式系统…

陈景东:集中与分布式拾音与声信号处理 | 演讲嘉宾公布

一、声音与音乐技术专题论坛 声音与音乐技术专题论坛将于3月28日同期举办&#xff01; 声音的应用领域广泛而深远&#xff0c;从场所识别到乐器音响质量评估&#xff0c;从机械故障检测到心肺疾病诊断&#xff0c;声音都发挥着重要作用。在互联网、大数据、人工智能的时代浪潮中…

爬虫逆向实战(35)-MyToken数据(MD5加盐)

一、数据接口分析 主页地址&#xff1a;MyToken 1、抓包 通过抓包可以发现数据接口是/ticker/currencyranklist 2、判断是否有加密参数 请求参数是否加密&#xff1f; 通过查看“载荷”模块可以发现有一个code参数 请求头是否加密&#xff1f; 无 响应是否加密&#xf…

【OpenCV实战】基于OpenCV中DNN(深度神经网络)使用OpenPose模型实现手势识别详解

一、手部关键点检测 如图所示,为我们的手部关键点所在位置。第一步,我们需要检测手部21个关键点。我们使用深度神经网络DNN模块来完成这件事。通过使用DNN模块可以检测出手部21个关键点作为结果输出,具体请看源码。 二,openpose手势识别模型 OpenPose的原理基于卷积神经网…

Arcgis新建位置分配求解最佳商店位置

背景 借用Arcgis帮助文档中的说明:在本练习中,您将为连锁零售店选择可以获得最大业务量的商店位置。主要目标是要将商店定位在人口集中地区附近,因为这种区域对商店的需求量较大。设立这一目标的前提是假设人们往往更多光顾附近的商店,而对于距离较远的商店则较少光顾。您…

构建用户身份基础设施,推动新能源汽车高质量发展

随着市场进入智能电动汽车时代&#xff0c;车企们发现&#xff0c;在激烈竞争的市场中不断增长&#xff0c;并不是一件容易的事。《麻省理工科技评论》&#xff0c;前段时间写了一篇报道&#xff1a;中国是如何称霸电动汽车世界的&#xff1f;“过去两年&#xff0c;中国电动汽…