ChatGPT 结合实际地图实现问答式地图检索功能基于Function calling
ChatGPT结合实际业务,主要是研发多函数调用(Function Calling)功能模块,将自定义函数通过ChatGPT 问答结果,实现对应函数执行,再次将结果输入ChatGPT,大模型将结果规范化处理输出,完成一次完整的prompt,实现对话式应用场景实际功能实现。
Function calling是什么?
Function calling是可以让我们用自己的函数当作调用chatgpt的参数,在函数中我们可以做任何事情,例如获取网络上的数据,查询自己的数据库等。
为什么使用Function calling?
比如当我们问chatgpt:上海今天得天气怎么样?他得回答是:很抱歉,作为一个语言模型,我无法提供实时的天气信息…为什么这样呢,因为chatgpt没有实时地网络数据,而有了Function calling我们可以在函数中调用查询天气的接口返回给chatgpt,chatgpt按照我们的需求把数据转为自然语言。当然这只是一个最基础最简单的应用场景,实际会有更多更复杂的应用场景。
Function Calling 的机制
Function Calling 机制的主要关键点:
- OpenAI 通过用户输入Pormpt 和打包参数、函数描述等进行问答结构化输出;
- 匹配判断函数功能,(该部分可用大模型自带的Auto,但效果差),也可自行实现函数判断是否调用;
- 如果匹配成功,生成对函数调用的结构化参数;
- 调用自定义执行函数,获得函数执行结果,并将结果append 到起初Pormpt,再次送入大模型;
- 大模型对结果进行整合,结构化输出结果;
- 如果不匹配直接返回结果显示给用户;
官方给出的具体流程 - 使用用户查询和函数参数中定义的一组外部函数库。
- 模型可以选择调用任意外部函数;如果是这样,内容将是符合自定义架构的字符串化 JSON 对象(注意:模型可能会生成无效的 JSON 或幻觉参数)。
- 在代码中将字符串解析为 JSON,并使用提供的参数调用函数(如果存在)。
- 通过将函数响应追加为新消息来再次调用模型,并让模型将结果汇总返回给用户。
Function Calling 的特点
Function Calling 是一种让 Chat Completion 模型调用外部函数的能力,可以让模型不仅仅根据自身的数据库知识进行回答,而是可以额外挂载一个函数库,然后根据用户提问去函数库检索,按照实际需求调用外部函数并获取函数运行结果,再基于函数运行结果进行回答。
支持 Function Calling 的非国产大模型
目前 OpenAI 仅支持 gpt-3.5-turbo-0613 和 gpt-4-0613 两个语言模型使用 Function Calling 功能。
支持 Function Calling 的国产大模型
- 百度文心大模型 MiniMax:做虚拟人物效果不错。
- ChatGLM3-6B:最著名的国产开源大模型,生态最好。
- 讯飞星火 3.0。
高德地图实际地图信息测试
本次测试是利用对话方式实现地图目标搜索功能,具体任务如下图所示。
用户提问: 帮我查找北京市三里屯附近的咖啡店
GPT解答: 结构化输出:北京市、三里屯、咖啡店
定义大模型结构化函数: 自定义大模型识别的自定义函数,实现函数功能;
函数执行: 将GPT解答结果传参,传入自定义函数;
结果回流: 将函数返回结果与直接Pormpt进行append,并一起传入大模型;
GPT解答: 规范化结果输出。
具体流程如下图所示
外部函数编写规范
在使用前需要我们先对外部函数进行定义和实现,实现就不多说就是一个具体函数。而定义需要我们包含以下几部分内容:
name: 清晰的函数名称
description: 函数功能的具体描述,尽量对输入参数和输出信息有明确的说明
parameters: 对函数的每个输入参数进行类型定义及其描述
required: 指定哪些参数必填
具体结构函数如下所示:
tools=[{
"type": "function",
"function": {
"name": "get_location_coordinate",
"description": "根据POI名称,获得POI的经纬度坐标",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "POI名称,必须是中文",
},
"city": {
"type": "string",
"description": "POI所在的城市名,必须是中文",
}
},
"required": ["location", "city"],
}
}
},
{
"type": "function",
"function": {
"name": "search_nearby_pois",
"description": "搜索给定坐标附近的poi",
"parameters": {
"type": "object",
"properties": {
"longitude": {
"type": "string",
"description": "中心点的经度",
},
"latitude": {
"type": "string",
"description": "中心点的纬度",
},
"keyword": {
"type": "string",
"description": "目标poi的关键字",
}
},
"required": ["longitude", "latitude", "keyword"],
}
}
}
注意:Function Calling 中的函数与参数的描述description也是一种 Prompt。这种 Prompt 也需要调优,否则会影响函数的召回、参数的准确性,甚至让 GPT 产生幻觉。
定义本地函数
• get_location_position 用于查询某个地点的地理坐标。
• search_nearby_list 用于查询地理坐标附近的某些信息(取决于用户输入的Keyword)
get_location_poinstion 代码块如下所示
def get_location_position (location, city):
url = f"https://restapi.amap.com/v5/place/text?key={amap_key}&keywords={location}®ion={city}"
print(url)
r = requests.get(url)
result = r.json()
if "pois" in result and result["pois"]:
return result["pois"][0]
return None
search_nearby_list 代码块如下所示
def search_nearby_list (longitude, latitude, keyword):
url = f"https://restapi.amap.com/v5/place/around?key={amap_key}&keywords={keyword}&location={longitude},{latitude}"
print(url)
r = requests.get(url)
result = r.json()
ans = ""
if "pois" in result and result["pois"]:
for i in range(min(3, len(result["pois"]))):
name = result["pois"][i]["name"]
address = result["pois"][i]["address"]
distance = result["pois"][i]["distance"]
ans += f"{name}\n{address}\n距离:{distance}米\n\n"
return ans
此处,利用的是高德地图的开放接口,在使用本例之前,需要先去高德地图开放接口的官网申请一个key
高德地图map-key: https://console.amap.com/dev/user/permission
数据传输关键点
用户提问: “北京三里屯附近的咖啡馆”
ChatGPT: {‘location’: ‘三里屯’, ‘city’: ‘北京’}
get_location_coordinate作用是找到三里屯的精确位置,函数输入和输出分别是:
输入数据为:{‘location’: ‘三里屯’, ‘city’: ‘北京’}
输出为:
可以看到,函数返回结果主要是和地区有关的,地名、地址、区号、代号、坐标等信息;
{‘parent’: ‘’, ‘address’: ‘朝阳区’, ‘distance’: ‘’, ‘pcode’: ‘110000’, ‘adcode’: ‘110105’, ‘pname’: ‘北京市’, ‘cityname’: ‘北京市’, ‘type’: ‘地名地址信息;热点地名;热点地名’, ‘typecode’: ‘190700’, ‘adname’: ‘朝阳区’, ‘citycode’: ‘010’, ‘name’: ‘三里屯’, ‘location’: ‘116.455294,39.937492’, ‘id’: ‘B0FFF5BER7’}
有用参数为经纬度坐标:‘location’: ‘116.455294,39.937492’
search_nearby_pois作用是在指定坐标位置找出所需的目标,函数输入和输出分别是:
输入:get_location_coordinate 的输出 + 原始Prompt;然后一起接入大模型GPT回答后的输出{‘longitude’: ‘116.455294’, ‘latitude’: ‘39.937492’, ‘keyword’: ‘咖啡馆’}
即就是参数:longitude, latitude, keyword;
输出为:
输出结果单条如下所示:
{“parent”:“B000A80TPS”,“address”:“三里屯路33号3.3大厦1层1010号”,“distance”:“52”,“pcode”:“110000”,“adcode”:“110105”,“pname”:“北京市”,“cityname”:“北京市”,“type”:“餐饮服务;咖啡厅;星巴克咖啡”,“typecode”:“050501”,“adname”:“朝阳区”,“citycode”:“010”,“name”:“星巴克咖啡(北京三里屯三点三大厦店)”,“location”:“116.455034,39.937060”,“id”:“B0G35RYBJW”}
函数中,利用distance可以输出最近的N个店,或者输出小于阈值的店;
根据需求定义输出标准,本例为:
- “name”:" 星巴克咖啡(北京三里屯三点三大厦店)"
- “distance”: “52”
- “address”: “三里屯路33号3.3大厦1层1010号”
本例输出为最近的3个(可自定义):
- 星巴克咖啡(北京三里屯三点三大厦店)
地址:三里屯路33号3.3大厦1层1010号,距离52米 - 内山咖啡店(3•3大厦店)
地址:三里屯路33号3•3大厦B1层,距离82米 - 春丽咖啡(3•3大厦店)
地址:三里屯路33号3.3大厦东门1层1099,距离93米
将输出结果再次append到Prompt,输入到大模型GPT 里,GPT答复输出整理后格式,如下所示。
最终ChatGPT答复:
ChatGPT: 根据您的要求,我找到了以下咖啡馆:
1. 星巴克咖啡(北京三里屯三点三大厦店),地址:三里屯路33号3.3大厦1层1010号,距离52米。
2. 内山咖啡店(3•3大厦店),地址:三里屯路33号3•3大厦B1层,距离82米。
3. 春丽咖啡(3•3大厦店),地址:三里屯路33号3.3大厦东门1层1099,距离93米。
以上是您附近的咖啡馆,您可以前往您喜欢的地方享用咖啡。
Process finished with exit code 0
整体实现思路
(1)首先大模型识别到应该先调用get_location_coordinate函数获取经纬度;
(2)get_location_coordinate执行结果给到大模型,大模型识别到下一步应该调用search_nearby_pois;
(3)search_nearby_pois执行结果给到大模型,大模型识别到不需要调用其它函数,用自然语言组织了最终答案。
总结
- 将函数说明组织成json形式告诉大模型。其中最重要的函数和参数描述,是该函数的prompt,大模型通过这个描述来确定用户的输入是否匹配该函数,是否召回该函数。
- 大模型如果召回了某个函数,即在本地去解析函数名和参数去使用,从而完成大模型与外部世界的连接。
主要参考链接
OpenAI官方Function Calling教程:
https://platform.openai.com/docs/guides/function-calling
最后,本地部署已经实现,是基于ChatGLM3b 实现的。有需要本地部署代码的私信。