本主要是利用RNN做多分类任务,在熟悉RNN训练的过程中,我们可以理解
1)超参数 batch_size和pad_size对训练过程的影响。
2)文本处理过程中是如何将文本的文字表示转化为向量表示
3)RNN梯度消失和序列长度的关系
4)利用pytorch如何训练一个网络模型以及保存和加载
5)理解多分类任务中的混淆矩阵
数据集HUCNews中抽取了20万条新闻标题,文本长度在20到30之间。一共10个类别,每类2万条。
类别:财经、房产、股票、教育、科技、社会、时政、体育、游戏、娱乐。
数据集划分
数据集 | 数据量 |
---|---|
训练集 | 18万 |
验证集 | 1万 |
测试集 | 1万 |
重要参数如下
self.dropout = 0.3 # 随机失活
self.num_epochs = 7 # epoch数
self.batch_size = 256 # batch size
self.pad_size = 7 # 每句话处理成的长度(短填长切)
self.learning_rate = 1e-3 # 学习率
self.hidden_size = 128 # rnn隐藏层
self.num_layers = 2 # rnn层数,注意RNN中的层数必须大于1,dropout才会生效
RNN.py 模型文件,主要是配置文件和RNN网络模型定义。
# coding: UTF-8
import torch
import torch.nn as nn
import numpy as np
class Config(object):
"""配置参数"""
def __init__(self, dataset, embedding):
self.model_name = 'RNN'
self.train_path = dataset + '/data/train.txt' # 训练集
self.dev_path = dataset + '/data/dev.txt' # 验证集
self.test_path = dataset + '/data/test.txt' # 测试集
self.class_list = [x.strip() for x in open(
dataset + '/data/class.txt', encoding='utf-8').readlines()] # 类别名单
self.vocab_path = dataset + '/data/vocab.pkl' # 词表
self.save_path = dataset + '/saved_dict/' + self.model_name + 'ckpt' # 模型训练结果
self.log_path = dataset + '/log/' + self.model_name
self.embedding_pretrained = torch.tensor(
np.load(dataset + '/data/' + embedding)["embeddings"].astype('float32')) \
if embedding != 'random' else None # 预训练词向量
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 设备
self.dropout = 0.3 # 随机失活
self.require_improvement = 10000 # 若超过10000batch效果还没提升,则提前结束训练
self.num_classes = len(self.class_list) # 类别数
self.n_vocab = 0 # 词表大小,在运行时赋值
self.num_epochs = 7 # epoch数
self.batch_size = 256 # batch size
self.pad_size = 7 # 每句话处理成的长度(短填长切)
self.learning_rate = 1e-3 # 学习率
self.embed = self.embedding_pretrained.size(1) \
if self.embedding_pretrained is not None else 300 # 字向量维度, 若使用了预训练词向量,则维度统一
self.hidden_size = 128 # rnn隐藏层
self.num_layers = 2 # rnn层数,注意RNN中的层数必须大于1,dropout才会生效
class Model(nn.Module):
def __init__(self, config):
super(Model, self).__init__()
if config.embedding_pretrained is not None:
self.embedding = nn.Embedding.from_pretrained(config.embedding_pretrained, freeze=False)
else:
self.embedding = nn.Embedding(config.n_vocab, config.embed, padding_idx=config.n_vocab - 1)
self.rnn = nn.RNN(config.embed, config.hidden_size, config.num_layers,
batch_first=True, dropout=config.dropout)
self.fc = nn.Linear(config.hidden_size, config.num_classes)
def forward(self, x):
# 将原始数据转化成密集向量表示 [batch_size, seq_len, embedding]
out = self.embedding(x[0])
out, hidden_ = self.rnn(out)
# out[:, -1, :] seq_len最后时刻的输出等价 hidden_
out = self.fc(out[:, -1, :])
return out
run_rnn.py文件,主程序入口,指定运行参数以及文本加载过程,最后调用train_eval.py的train函数进行模型训练。
import time
import torch
import numpy as np
from train_eval import train, init_network
from importlib import import_module
import argparse
from utils import build_dataset, build_iterator, get_time_dif
parser = argparse.ArgumentParser(description='Chinese Text Classification')
parser.add_argument('--model', default='RNN', type=str, required=True)
parser.add_argument('--embedding', default='pre_trained', type=str, help='random or pre_trained')
parser.add_argument('--word', default=False, type=bool, help='True for word, False for char')
args = parser.parse_args()
if __name__ == '__main__':
dataset = 'THUCNews' # 数据集
# 搜狗新闻:embedding_SougouNews.npz, 腾讯:embedding_Tencent.npz, 随机初始化:random
embedding = 'embedding_SougouNews.npz'
if args.embedding == 'random':
embedding = 'random'
model_name = args.model
x = import_module('models.' + model_name)
config = x.Config(dataset, embedding)
np.random.seed(1)
torch.manual_seed(1)
torch.cuda.manual_seed_all(1)
torch.backends.cudnn.deterministic = True
start_time = time.time()
print("Loading data...")
# args.word 分词方式, True是词级别,默认是False
vocab, train_data, dev_data, test_data = build_dataset(config, args.word)
# build_iterator返回格式 [([词/字在词典中的位置] ,label, len(word)), ...]
train_iter = build_iterator(train_data, config)
dev_iter = build_iterator(dev_data, config)
test_iter = build_iterator(test_data, config)
time_dif = get_time_dif(start_time)
print("Time usage:", time_dif)
# len(vocab)="<PAD>", len(vocab) -1 ="<UNK>"
config.n_vocab = len(vocab)
model = x.Model(config).to(config.device)
init_network(model)
print(model.parameters)
train(config, model, train_iter, dev_iter, test_iter)
train_eval.py 文件,主要对模型参数进行初始化,函数train主要是从自定义迭代器中加载数据进行训练。test函数是在模型训练完后对测试数据集进行测试。evaluate函数主要是在训练过程中对验证集数据进行验证。
# coding: UTF-8
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from sklearn import metrics
import time
from utils import get_time_dif
from tensorboardX import SummaryWriter
import matplotlib.pyplot as plt
# 权重初始化,默认xavier
def init_network(model, method='xavier', exclude='embedding', seed=123):
for name, w in model.named_parameters():
if exclude not in name:
if 'weight' in name:
if method == 'xavier':
nn.init.xavier_normal_(w)
elif method == 'kaiming':
nn.init.kaiming_normal_(w)
else:
nn.init.normal_(w)
elif 'bias' in name:
nn.init.constant_(w, 0)
else:
pass
def train(config, model, train_iter, dev_iter, test_iter):
loss_list = []
start_time = time.time()
model.train()
optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)
total_batch = 0 # 记录进行到多少batch
dev_best_loss = float('inf')
last_improve = 0 # 记录上次验证集loss下降的batch数
flag = False # 记录是否很久没有效果提升
writer = SummaryWriter(log_dir=config.log_path + '/' + time.strftime('%m-%d_%H.%M', time.localtime()))
# dev_acc_list = []
# dev_loss_list = []
for epoch in range(config.num_epochs):
print('Epoch [{}/{}]'.format(epoch + 1, config.num_epochs))
for i, (trains, labels) in enumerate(train_iter):
outputs = model(trains)
# 打印tensor的所有数据
# torch.set_printoptions(threshold=float('inf'))
model.zero_grad()
loss = F.cross_entropy(outputs, labels)
loss_list.append(loss.detach().numpy())
loss.backward()
optimizer.step()
if total_batch % 100 == 0:
true = labels.data.cpu()
# 取出每一行最大的那个概率的索引值
predic = torch.max(outputs.data, 1)[1].cpu()
train_acc = metrics.accuracy_score(true, predic)
dev_acc, dev_loss = evaluate(config, model, dev_iter)
# dev_acc_list.append(dev_acc)
# dev_loss_list.append(dev_loss)
if dev_loss < dev_best_loss:
dev_best_loss = dev_loss
torch.save(model.state_dict(), config.save_path)
improve = '*'
last_improve = total_batch
else:
improve = ''
time_dif = get_time_dif(start_time)
msg = 'Iter: {0:>6}, Train Loss: {1:>5.2}, Train Acc: {2:>6.2%}, Val Loss: {3:>5.2}, Val Acc: {4:>6.2%}, Time: {5} {6}'
print(msg.format(total_batch, loss.item(), train_acc, dev_loss, dev_acc, time_dif, improve))
writer.add_scalar("loss/train", loss.item(), total_batch)
writer.add_scalar("loss/dev", dev_loss, total_batch)
writer.add_scalar("acc/train", train_acc, total_batch)
writer.add_scalar("acc/dev", dev_acc, total_batch)
model.train()
total_batch += 1
if total_batch - last_improve > config.require_improvement:
# 验证集loss超过10000batch没下降,结束训练
print("No optimization for a long time, auto-stopping...")
flag = True
break
if flag:
break
writer.close()
size = len(loss_list)
x_axis = [i for i in range(0, size)]
plt.plot(x_axis, loss_list, color='red')
plt.show()
test(config, model, test_iter)
def test(config, model, test_iter):
model.load_state_dict(torch.load(config.save_path))
model.eval()
start_time = time.time()
test_acc, test_loss, test_report, test_confusion = evaluate(config, model, test_iter, test=True)
msg = 'Test Loss: {0:>5.2}, Test Acc: {1:>6.2%}'
print(msg.format(test_loss, test_acc))
print("Precision, Recall and F1-Score...")
print(test_report)
print("Confusion Matrix...")
print(test_confusion)
time_dif = get_time_dif(start_time)
print("Time usage:", time_dif)
def evaluate(config, model, data_iter, test=False):
model.eval()
loss_total = 0
predict_all = np.array([], dtype=int)
labels_all = np.array([], dtype=int)
# 模型评估的时候无梯度模式
with torch.no_grad():
for texts, labels in data_iter:
outputs = model(texts)
loss = F.cross_entropy(outputs, labels)
loss_total += loss
labels = labels.data.cpu().numpy()
predict = torch.max(outputs.data, 1)[1].cpu().numpy()
labels_all = np.append(labels_all, labels)
predict_all = np.append(predict_all, predict)
acc = metrics.accuracy_score(labels_all, predict_all)
if test:
report = metrics.classification_report(labels_all, predict_all, target_names=config.class_list, digits=4)
confusion = metrics.confusion_matrix(labels_all, predict_all)
return acc, loss_total / len(data_iter), report, confusion
# 用于训练过程中的验证
return acc, loss_total / len(data_iter)
model_test.py 是单个文本的推理文件。
utils.py定义了加载数据集函数load_dataset,自定义迭代器将数据转化为tensor格式便于输入到模型。
完整代码github地址
项目结构清晰以后我们主要要记录一下,RNN训练过程中遇到的一些问题,尽管现在已经不怎么使用RNN网络模型了,不过这不影响RNN在时序网络中的地位(LSTM 长短时记忆网络、GRU门控循环单元都是RNN的优化)我们还是有必要好好认识一下RNN的训练过程,以及超参数对损失值的影响。
我们主要参数设置如下,我们只对batch_size和pad_size进行修改看一下模型的损失下降曲线。
self.dropout = 0.3 # 随机失活
self.require_improvement = 10000 # 若超过10000batch效果还没提升,则提前结束训练
self.num_classes = len(self.class_list) # 类别数
self.n_vocab = 0 # 词表大小,在运行时赋值
self.num_epochs = 7 # epoch数
self.batch_size = 64 # batch size
self.pad_size = 32 # 每句话处理成的长度(短填长切)
self.learning_rate = 1e-3 # 学习率
self.embed = self.embedding_pretrained.size(1) \
if self.embedding_pretrained is not None else 300 # 字向量维度
self.hidden_size = 128 # rnn隐藏层
self.num_layers = 2 # rnn层数,注意RNN中的层数必须大于1,dropout才会生效
batch_size = 64 pad_size = 32 learning_rate = 1e-3
训练过程
损失函数结果图,可以看出根本就不收敛,pad_size值过大,可能出现出现梯度消失,导致模型参数根本就不更新。
batch_size = 64 pad_size = 16 learning_rate = 1e-3
训练过程
从这里足以感性的理解为什么很多人说RNN携带的时序信息走不远,当我们将时序长度pad_size设置16时(其他参数不变)可以看到验证数据集的准确度和损失都还不错的,比pad_size=32要好很多,至少可以知道模型的参数是在更新,且损失值也有下降的趋势。
混淆矩阵也还可以。 混淆矩阵参考
以上是文本序列长度pad_size对RNN训练的影响。现在我们来看下batch_size大小对RNN训练的影响。为了让模型收敛pad_szie统一取16
batch_size = 128 pad_size = 16 learning_rate = 1e-3
训练过程
batch_size变大为128更新次数少,每一次迭代考虑的样本更多。每次迭代考虑的样本大了以后,梯度优化的波动变小,下降更平滑。相比batch_size=64,损失图像下下降确实更平滑。混淆矩阵无太大差异。
batch_size = 256 pad_size = 16 learning_rate = 1e-3
训练过程
batch_size=256损失值下降更平滑,收敛速度更快,batch_size=64时训练时长在18min左右,而此参数下训练时长仅要5min左右。
batch_size = 1024 pad_size = 16 learning_rate = 1e-3
训练过程
batch_size=1024时收敛速度更快,而此参数下训练时长仅要2min左右。
混淆矩阵,可以看出在显存足够大的情况下适当增大batch_size可以达到两点效果1)加快训练的收敛的速度 2)梯度优化的波动减小,收敛过程更加平滑。
至此我们已经完成了RNN训练中两个比较重要的超参数batch_size和pad_size对训练过程的影响。还有很多其他的超参数这里就不实验了。
pad_size由32变成16时候,显然只用到了一半的数据信息,无论怎么进行超参数的优化都不可能达到最好的结果。如果使用32又会出现梯度消失,从而模型不收敛。LSTM模型就有效的改进了这个缺陷。下一篇文章我们使用同样的超参数和数据集构造一个LSTM模型实验这个改进有多大。
参考
https://github.com/649453932/Chinese-Text-Classification-Pytorch