软件杯 垃圾邮件(短信)分类算法实现 机器学习 深度学习

news2025/1/7 21:35:32

文章目录

  • 0 前言
  • 2 垃圾短信/邮件 分类算法 原理
    • 2.1 常用的分类器 - 贝叶斯分类器
  • 3 数据集介绍
  • 4 数据预处理
  • 5 特征提取
  • 6 训练分类器
  • 7 综合测试结果
  • 8 其他模型方法
  • 9 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 垃圾邮件(短信)分类算法实现 机器学习 深度学习

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 垃圾短信/邮件 分类算法 原理

垃圾邮件内容往往是广告或者虚假信息,甚至是电脑病毒、情色、反动等不良信息,大量垃圾邮件的存在不仅会给人们带来困扰,还会造成网络资源的浪费;

网络舆情是社会舆情的一种表现形式,网络舆情具有形成迅速、影响力大和组织发动优势强等特点,网络舆情的好坏极大地影响着社会的稳定,通过提高舆情分析能力有效获取发布舆论的性质,避免负面舆论的不良影响是互联网面临的严肃课题。

将邮件分为垃圾邮件(有害信息)和正常邮件,网络舆论分为负面舆论(有害信息)和正面舆论,那么,无论是垃圾邮件过滤还是网络舆情分析,都可看作是短文本的二分类问题。

在这里插入图片描述

2.1 常用的分类器 - 贝叶斯分类器

贝叶斯算法解决概率论中的一个典型问题:一号箱子放有红色球和白色球各 20 个,二号箱子放油白色球 10 个,红色球 30
个。现在随机挑选一个箱子,取出来一个球的颜色是红色的,请问这个球来自一号箱子的概率是多少?

利用贝叶斯算法识别垃圾邮件基于同样道理,根据已经分类的基本信息获得一组特征值的概率(如:“茶叶”这个词出现在垃圾邮件中的概率和非垃圾邮件中的概率),就得到分类模型,然后对待处理信息提取特征值,结合分类模型,判断其分类。

贝叶斯公式:

P(B|A)=P(A|B)*P(B)/P(A)

P(B|A)=当条件 A 发生时,B 的概率是多少。代入:当球是红色时,来自一号箱的概率是多少?

P(A|B)=当选择一号箱时,取出红色球的概率。

P(B)=一号箱的概率。

P(A)=取出红球的概率。

代入垃圾邮件识别:

P(B|A)=当包含"茶叶"这个单词时,是垃圾邮件的概率是多少?

P(A|B)=当邮件是垃圾邮件时,包含“茶叶”这个单词的概率是多少?

P(B)=垃圾邮件总概率。

P(A)=“茶叶”在所有特征值中出现的概率。

在这里插入图片描述

3 数据集介绍

使用中文邮件数据集:丹成学长自己采集,通过爬虫以及人工筛选。

数据集“data” 文件夹中,包含,“full” 文件夹和 “delay” 文件夹。

“data” 文件夹里面包含多个二级文件夹,二级文件夹里面才是垃圾邮件文本,一个文本代表一份邮件。“full” 文件夹里有一个 index
文件,该文件记录的是各邮件文本的标签。

在这里插入图片描述

数据集可视化:

在这里插入图片描述

4 数据预处理

这一步将分别提取邮件样本和样本标签到一个单独文件中,顺便去掉邮件的非中文字符,将邮件分好词。

邮件大致内容如下图:

在这里插入图片描述

每一个邮件样本,除了邮件文本外,还包含其他信息,如发件人邮箱、收件人邮箱等。因为我是想把垃圾邮件分类简单地作为一个文本分类任务来解决,所以这里就忽略了这些信息。
用递归的方法读取所有目录里的邮件样本,用 jieba 分好词后写入到一个文本中,一行文本代表一个邮件样本:

import re
import jieba
import codecs
import os 
# 去掉非中文字符
def clean_str(string):
    string = re.sub(r"[^\u4e00-\u9fff]", " ", string)
    string = re.sub(r"\s{2,}", " ", string)
    return string.strip()

def get_data_in_a_file(original_path, save_path='all_email.txt'):
    files = os.listdir(original_path)
    for file in files:
        if os.path.isdir(original_path + '/' + file):
                get_data_in_a_file(original_path + '/' + file, save_path=save_path)
        else:
            email = ''
            # 注意要用 'ignore',不然会报错
            f = codecs.open(original_path + '/' + file, 'r', 'gbk', errors='ignore')
            # lines = f.readlines()
            for line in f:
                line = clean_str(line)
                email += line
            f.close()
            """
            发现在递归过程中使用 'a' 模式一个个写入文件比 在递归完后一次性用 'w' 模式写入文件快很多
            """
            f = open(save_path, 'a', encoding='utf8')
            email = [word for word in jieba.cut(email) if word.strip() != '']
            f.write(' '.join(email) + '\n')

print('Storing emails in a file ...')
get_data_in_a_file('data', save_path='all_email.txt')
print('Store emails finished !')

然后将样本标签写入单独的文件中,0 代表垃圾邮件,1 代表非垃圾邮件。代码如下:

def get_label_in_a_file(original_path, save_path='all_email.txt'):
    f = open(original_path, 'r')
    label_list = []
    for line in f:
        # spam
        if line[0] == 's':
            label_list.append('0')
        # ham
        elif line[0] == 'h':
            label_list.append('1')

    f = open(save_path, 'w', encoding='utf8')
    f.write('\n'.join(label_list))
    f.close()

print('Storing labels in a file ...')
get_label_in_a_file('index', save_path='label.txt')
print('Store labels finished !')

5 特征提取

将文本型数据转化为数值型数据,本文使用的是 TF-IDF 方法。

TF-IDF 是词频-逆向文档频率(Term-Frequency,Inverse Document Frequency)。公式如下:

在这里插入图片描述

在所有文档中,一个词的 IDF 是一样的,TF 是不一样的。在一个文档中,一个词的 TF 和 IDF
越高,说明该词在该文档中出现得多,在其他文档中出现得少。因此,该词对这个文档的重要性较高,可以用来区分这个文档。

在这里插入图片描述

import jieba
from sklearn.feature_extraction.text import TfidfVectorizer

def tokenizer_jieba(line):
    # 结巴分词
    return [li for li in jieba.cut(line) if li.strip() != '']

def tokenizer_space(line):
    # 按空格分词
    return [li for li in line.split() if li.strip() != '']

def get_data_tf_idf(email_file_name):
    # 邮件样本已经分好了词,词之间用空格隔开,所以 tokenizer=tokenizer_space
    vectoring = TfidfVectorizer(input='content', tokenizer=tokenizer_space, analyzer='word')
    content = open(email_file_name, 'r', encoding='utf8').readlines()
    x = vectoring.fit_transform(content)
    return x, vectoring

6 训练分类器

这里学长简单的给一个逻辑回归分类器的例子

from sklearn.linear_model import LogisticRegression
from sklearn import svm, ensemble, naive_bayes
from sklearn.model_selection import train_test_split
from sklearn import metrics
import numpy as np

if __name__ == "__main__":
    np.random.seed(1)
    email_file_name = 'all_email.txt'
    label_file_name = 'label.txt'
    x, vectoring = get_data_tf_idf(email_file_name)
    y = get_label_list(label_file_name)

    # print('x.shape : ', x.shape)
    # print('y.shape : ', y.shape)
    
    # 随机打乱所有样本
    index = np.arange(len(y))  
    np.random.shuffle(index)
    x = x[index]
    y = y[index]

    # 划分训练集和测试集
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)

    clf = svm.LinearSVC()
    # clf = LogisticRegression()
    # clf = ensemble.RandomForestClassifier()
    clf.fit(x_train, y_train)
    y_pred = clf.predict(x_test)
    print('classification_report\n', metrics.classification_report(y_test, y_pred, digits=4))
    print('Accuracy:', metrics.accuracy_score(y_test, y_pred))

7 综合测试结果

测试了2000条数据,使用如下方法:

  • 支持向量机 SVM

  • 随机数深林

  • 逻辑回归
    在这里插入图片描述

可以看到,2000条数据训练结果,200条测试结果,精度还算高,不过数据较少很难说明问题。

8 其他模型方法

还可以构建深度学习模型

在这里插入图片描述

网络架构第一层是预训练的嵌入层,它将每个单词映射到实数的N维向量(EMBEDDING_SIZE对应于该向量的大小,在这种情况下为100)。具有相似含义的两个单词往往具有非常接近的向量。

第二层是带有LSTM单元的递归神经网络。最后,输出层是2个神经元,每个神经元对应于具有softmax激活功能的“垃圾邮件”或“正常邮件”。



    def get_embedding_vectors(tokenizer, dim=100):
    embedding_index = {}
    with open(f"data/glove.6B.{dim}d.txt", encoding='utf8') as f:
    for line in tqdm.tqdm(f, "Reading GloVe"):
    values = line.split()
    word = values[0]
    vectors = np.asarray(values[1:], dtype='float32')
    embedding_index[word] = vectors
    
    word_index = tokenizer.word_index
    embedding_matrix = np.zeros((len(word_index)+1, dim))
    for word, i in word_index.items():
    embedding_vector = embedding_index.get(word)
    if embedding_vector is not None:
    # words not found will be 0s
    embedding_matrix[i] = embedding_vector
    
    return embedding_matrix


    def get_model(tokenizer, lstm_units):
    """
    Constructs the model,
    Embedding vectors => LSTM => 2 output Fully-Connected neurons with softmax activation
    """
    # get the GloVe embedding vectors
    embedding_matrix = get_embedding_vectors(tokenizer)
    model = Sequential()
    model.add(Embedding(len(tokenizer.word_index)+1,
    EMBEDDING_SIZE,
    weights=[embedding_matrix],
    trainable=False,
    input_length=SEQUENCE_LENGTH))
    
    model.add(LSTM(lstm_units, recurrent_dropout=0.2))
    model.add(Dropout(0.3))
    model.add(Dense(2, activation="softmax"))
    # compile as rmsprop optimizer
    # aswell as with recall metric
    model.compile(optimizer="rmsprop", loss="categorical_crossentropy",
    metrics=["accuracy", keras_metrics.precision(), keras_metrics.recall()])
    model.summary()
    return model

训练结果如下:

_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding_1 (Embedding) (None, 100, 100) 901300
_________________________________________________________________
lstm_1 (LSTM) (None, 128) 117248
_________________________________________________________________
dropout_1 (Dropout) (None, 128) 0
_________________________________________________________________
dense_1 (Dense) (None, 2) 258
=================================================================
Total params: 1,018,806
Trainable params: 117,506
Non-trainable params: 901,300
_________________________________________________________________
X_train.shape: (4180, 100)
X_test.shape: (1394, 100)
y_train.shape: (4180, 2)
y_test.shape: (1394, 2)
Train on 4180 samples, validate on 1394 samples
Epoch 1/20
4180/4180 [==============================] - 9s 2ms/step - loss: 0.1712 - acc: 0.9325 - precision: 0.9524 - recall: 0.9708 - val_loss: 0.1023 - val_acc: 0.9656 - val_precision: 0.9840 - val_recall: 0.9758

Epoch 00001: val_loss improved from inf to 0.10233, saving model to results/spam_classifier_0.10
Epoch 2/20
4180/4180 [==============================] - 8s 2ms/step - loss: 0.0976 - acc: 0.9675 - precision: 0.9765 - recall: 0.9862 - val_loss: 0.0809 - val_acc: 0.9720 - val_precision: 0.9793 - val_recall: 0.9883

在这里插入图片描述

9 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1509454.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++Qt学习——Qt信号槽

信号和槽是Qt编程的基础,他们的存在使得在Qt中处理界面各个组件的交互操作变得更加直观简单。信号(SUGNAL):也就是发送者发送的函数信号,例如PushButtun最常见的信号就是鼠标单击的时候发射的click()信号槽&#xff08…

华为配置ISP选路实现报文按运营商转发

CLI举例:配置ISP选路实现报文按运营商转发 介绍通过配置ISP选路实现报文按运营商转发的配置举例。 组网需求 如图1所示,FW作为安全网关部署在网络出口,企业分别从ISP1和ISP2租用一条链路。 企业希望访问Server 1的报文从ISP1链路转发&#…

Python机器学习预测+回归全家桶,新增TCN,BiTCN,TCN-GRU,BiTCN-BiGRU等组合模型预测...

截止到本期,一共发了4篇关于机器学习预测全家桶Python代码的文章。参考往期文章如下: 1.机器学习预测全家桶-Python,一次性搞定多/单特征输入,多/单步预测!最强模板! 2.机器学习预测全家桶-Python&#xff…

el-table中 el-popover 性能优化

场景:在 el-table 中使用 el-popover ,出现了 loading 加载卡顿的问题,接口返回的数据的时间大概是 140ms ,所以不是接口慢的原因;通过对表中结构的逐步排查,发现是表中的 某一行 所影响的;并且 其中含有 e…

qt 汉字输出 中文输出 显示乱码 qDebug() 乱码 解决

要正确显示汉字,必须要先了解计算机文字编码相关知识,参考:unicode ucs2 utf16 utf8 ansi GBK GB2312 互转 及 渲染_ucs2编码转换-CSDN博客 1、汉字输出到 应用程序输出面板 qt 自定义的输出类qDebug() 、QDebug对象、QMessageLogger默认输…

单例模式及线程安全的实践

🌟 欢迎来到 我的博客! 🌈 💡 探索未知, 分享知识 !💫 本文目录 引言基本的单例模式长啥样?怎样才能线程安全?**懒汉模式** ( 双 重 检 查 ) 🎉总结🎉 引言 单例模式是个…

WebPack自动吐出脚本

window.c c; window.res ""; window.flag false;c function (r) {if (flag) {window.res window.res "${r.toString()}" ":" (e[r] "") ",";}return window.c(r); }代码改进了一下,可以过滤掉重复的方…

酷开科技发力研发酷开系统,让家庭娱乐生活更加丰富多彩

在这个快节奏的社会,家庭娱乐已成为我们日常生活中不可或缺的一部分,为了给家庭带来更多欢笑与感动,酷开科技发力研发出拥有丰富内容和技术的智能电视操作系统——酷开系统,它集合了电影、电视剧、综艺、游戏、音乐等海量内容&…

腾讯云和阿里云4核8G云服务器多少钱一年和1个月费用对比

4核8G云服务器多少钱一年?阿里云ECS服务器u1价格955.58元一年,腾讯云轻量4核8G12M带宽价格是646元15个月,阿腾云atengyun.com整理4核8G云服务器价格表,包括一年费用和1个月收费明细: 云服务器4核8G配置收费价格 阿里…

6.S081的Lab学习——Lab1: Xv6 and Unix utilities

文章目录 前言一、启动xv6(难度:Easy)解析: 二、sleep(难度:Easy)解析: 三、pingpong(难度:Easy)解析: 四、Primes(素数,难度:Moderate/Hard)解析&#xff1a…

pymysql连不上mysql的原因

我试了两种解决办法。可以参考一下 第一种:查看有没有打开mysql服务 第二种:刷新 MySQL 用户权限 password改成自己的密码 GRANT ALL PRIVILEGES ON *.* TO root% IDENTIFIED BY password WITH GRANT OPTION;FLUSH PRIVILEGES; 第三种:检…

CSS3的一些常用语句以及解释

margin和padding position static 该关键字指定元素使用正常的布局行为,即元素在文档常规流中当前的布局位置。此时 top, right, bottom, left 和 z-index 属性无效。 relative 该关键字下,元素先放置在未添加定位时的位置,再在不改变页面…

C# 入门

教程: .NET | 构建。测试。部署。 (microsoft.com) C# 文档 - 入门、教程、参考。 | Microsoft Learn C# 数据类型 | 菜鸟教程 (runoob.com) IDE: Visual Studio: 面向软件开发人员和 Teams 的 IDE 和代码编辑器 (microsoft.com) Rider&#xff1a…

Net8 ABP VNext集成FreeSql、SqlSugar

ABP可以快速搭建开发架构,但是内置的是EFCore,国内中小企业使用FreeSql与SqlSugar还是较多,为新手提供使用提供参考 ABP、FreeSql、SqlSugar参考地址: ABP Framework | Open source web application framework for ASP.NET Core…

Buildroot 之二 详解构建架构、流程、external tree、示例

构建系统 Buildroot 中的构建系统使用的是从 Linux Kernel(4.17-rc2) 中移植的 Kconfig(配置) + Makefile & Kbuild(编译)这套构建系统,移植后的源码位于 support/kconfig/ 目录下。Buildroot 本身是一个构建系统,与直接编译源码不同,因此,它对这套系统进行了比较…

【恒源智享云】conda虚拟环境的操作指令

conda虚拟环境的操作指令 由于虚拟环境经常会用到,但是我总忘记,所以写个博客,留作自用。 在恒源智享云上,可以直接在终端界面输入指令,例如: 查看已经存在的虚拟环境列表 conda env list查看当前虚拟…

SpringDataRedis笔记

spring:application:name: springdataredisredis:host: 120.0.0.1port: 6379password: 123456lettuce:pool:#最大连接数 默认就是8max-active: 8#最大空闲连接 默认就是8max-idle: 8#最小空闲连接 默认是0min-idle: 0#连接等待时间 默认-1无限等待max-wait: 100RedisTemplate默…

es 进阶查询

准备数据 先准备一些数据 #指定ik分词器 PUT /es_db {"settings" : {"index" : {"analysis.analyzer.default.type": "ik_max_word"}} }# 创建文档,指定id PUT /es_db/_doc/1 { "name": "张三", "sex"…

【鸿蒙 HarmonyOS 4.0】Web组件

一、介绍 页面加载是Web组件的基本功能。根据页面加载数据来源可以分为三种常用场景,包括加载网络页面、加载本地页面、加载HTML格式的富文本数据。 二、加载网页 2.1、加载在线网页 Web组件的使用非常简单,只需要在Page目录下的ArkTS文件中创建一个…

ArcGIS学习(十六)基于交通网络的城市情景分析

ArcGIS学习(十六)基于交通网络的城市情景分析 本任务给大家带来一个非常重要的内容一一基于交通网络的城市情景分析。基于交通网络模拟交通出行并进行相关分析是ArcGIS里面一种常用的分析方法,大家一定要掌握!本任务包括三个关卡: 交通网络模型构建基于交通网络模型的基本…