机器学习-pytorch1(持续更新)

news2025/2/27 21:44:47

上一节我们学习了机器学习的线性模型和非线性模型的机器学习基础知识,这一节主要将公式变为代码

代码编写网站:https://colab.research.google.com/drive

学习课程链接:ML 2022 Spring

1、Load Data(读取数据)

这需要用到pytorch里面的两个函数Dataset和Dataloader

torch.utils.data.Dataset
torch.utils.data.DataLoader

Dataset:是用来存储数据样本和期望值

dataset = MyDataset(file)

Dataloader:批量对数据进行分组,启用多处理

dataloader = DataLoader(dataset, batch_size, shuffle=True)

// 其中对于shuffle的取值,True表示训练,false表示测试

关于Dataset和Dataloader的关系如下:

 

ML 2022 Spring为图片来源

我们读取完数据,是不是想知道我们的数据长什么样子呢?(我们称数据为Tensors)

首先,它可能是一个一维数据,比如一个音频、一个温度

其次,还可能是一个二维数据,比如一张二值图像

最后,还可能是一个三维数据,比如一个彩色的图像

又有问题了,我们怎么通过编程得到我们图像的大小?

可以使用pytorch里面的shape()函数

我们怎么通过编程创造我们的数据呢?

eg:
x = torch.tensor([[1,-1],[-1,1]])
x = torch.from_numpy(np.array([[1,-1],[-1,1]]))
全0或全1数据
x = torch.zeros([2,2])    # 2*2的全0数据
x = torch.ones([1,2,5])    # 1*2*5的全1数据

 其次,还支持矩阵的运算

Addition:z = x + y
Subtraction:z = x - y
Power:y = x.pow(2)
Summation:y = x.sum()
Mean:y = x.mean()
维度转换:x = x.transpose(dim0,dim1)
消除维度:x = x.squeeze(dim)
增加维度:x = x.unsqueeze(dim)
组合:w = torch.cat([x,y,z],dim=1)

拥有不同的数据类型:

使用.to()可以切换到不同的设备:

CPU: x = x.to('cpu')
GPU: x = x.to('cuda')

 这里就又涉及到如何检查你的GPU了?可以使用以下语句检查你的计算机是否有GPU:

torch.cuda.is_available()

如何计算梯度?

 // 注意矩阵一定要使用小数点

2、Define Neural Network(训练和测试神经网络)

torch.nn.Module

线性: 

 非线性:

Sigmoid Activation:nn.Sigmoid()

ReLU Activation:nn.ReLU()

下面我根据所学的知识构建我自己的神经网络:

3、Loss Function(损失函数) 

x = torch.nn.MSELoss    # 对于回归任务
x = torch.nn.CrossEntropyLoss etc.    # 对于分类任务
loss = x(model_output,expected_value)

4、Optimization Algorithm(优化)

torch.optim

这是基于梯度的优化算法,不断调整参数,减少误差

比如:随机梯度下降(SGD)

torch.optim.SGD(model.parameters(), lr, momentum = 0)

* 调用optimizer.zero_grad()重置模型参数的梯度。

*调用loss.backward()反向传播预测loss的梯度。

*调用optimizer.step()调整模型参数。 

5、Entire Procedure(整个程序)

import torch.utils.data as data
dataset = data.Dataset(file)              # 读取数据
tr_set = DataLoader(dataset,batch_size,shuffle=True)  # 对数据集进行分组
model = MyModel().to(device)              # 建立我的模型并且选择我的设备(cpu or gpu)
criterion = nn.MSELoss()                # 建立损失函数
optimizer = torch.optim.SGD(model.parameters(),0.1)   # 建立优化
# 训练
for epoch in range(n_epochs):             # 迭代数据
  model.train()                    # 训练模型
  for x, y in tr_set:               # 迭代数据集
    optimizer.zero_grad()              # 设置梯度为0
    x, y = x.to(device),y.to(device)       # 将数据移动到设备
    pred = model(x)                # 计算输出
    loss = criterion(pred,y)            # 计算损失函数
    loss.backward()                 # 计算反向梯度
    optimizer.model()                # 优化模型
# 验证
model.eval()                      # 将模型设置为评估模式
total_loss = 0          
for x,y in dv_set:                  # 对数据集进行迭代
  x,y = x.to(device),y.to(device)          # 将数据移动到涉笔
  with torch.no_grad():                # 不可迭代的计算
    pred = model(x)                # 计算输出
    loss = criterion(pred,y)           # 计算损失函数
  total_loss += loss.cpu().item()*len(x)      # 累加损失误差
  avg_loss = total_loss / len(dv_set.dataset)   # 计算平均损失
# 测试
model.eval()                       # 将模型设置为评估模式
preds = []
for x in dv_set:                   # 对数据集进行迭代
  x = x.to(device)                  # 将数据移动到涉笔
  with torch.no_grad():                # 不可迭代的计算
    pred = model(x)                # 计算输出
    preds.append(pred.cpu())             # 收集预测

// model.eval()  :更改模型的行为

//  with torch.no_grad() :防止对验证/测试数据进行意外训练

当我们训练完模型,也完成了测试,为了不使模型丢失,我们需要保存模型,pytorch也为我们提供了保存模型的方法。

保存模型:torch.save(model.state_dict(),path)

下次我们使用已经训练完成的模型,或者想继续训练,我们需要读取模型。

读取模型:ckpt = torch.load(path)     model.load_state_dict(ckpt)

// 这只是我根据所听的课自己写的笔记,如果有什么错误欢迎指正!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1504541.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Chain of Verification(验证链、CoVe)—理解与实现

原文地址:Chain of Verification (CoVe) — Understanding & Implementation 2023 年 10 月 9 日 GitHub 存储库 介绍 在处理大型语言模型(LLM)时,一个重大挑战,特别是在事实问答中,是幻觉问题。当答案…

排序算法全景:从基础到高级的Java实现

🌟 前言 欢迎来到我的技术小宇宙!🌌 这里不仅是我记录技术点滴的后花园,也是我分享学习心得和项目经验的乐园。📚 无论你是技术小白还是资深大牛,这里总有一些内容能触动你的好奇心。🔍 &#x…

【红外与可见光融合:条件学习:实例归一化(IN)】

Infrared and visible image fusion based on a two-stage class conditioned auto-encoder network (基于两级类条件自编码器网络的红外与可见光图像融合) 现有的基于自动编码器的红外和可见光图像融合方法通常利用共享编码器从不同模态中提取特征&am…

Java17 --- springCloud之LoadBalancer

目录 一、LoadBalancer实现负载均衡 1.1、创建两个相同的微服务 1.2、在客户端80引入loadBalancer的pom 1.3、80服务controller层&#xff1a; 一、LoadBalancer实现负载均衡 1.1、创建两个相同的微服务 1.2、在客户端80引入loadBalancer的pom <!--loadbalancer-->&…

ARTS Week 20

Algorithm 本周的算法题为 1222. 可以攻击国王的皇后 在一个 下标从 0 开始 的 8 x 8 棋盘上&#xff0c;可能有多个黑皇后和一个白国王。 给你一个二维整数数组 queens&#xff0c;其中 queens[i] [xQueeni, yQueeni] 表示第 i 个黑皇后在棋盘上的位置。还给你一个长度为 2 的…

js【详解】async await

为什么要使用 async await async await 实现了使用同步的语法实现异步&#xff0c;不再需要借助回调函数&#xff0c;让代码更加易于理解和维护。 (async function () {// await 必须放在 async 函数中try {// 加载第一张图片const img1 await loadImg1()// 加载第二张图片co…

Linux网络套接字之UDP网络程序

(&#xff61;&#xff65;∀&#xff65;)&#xff89;&#xff9e;嗨&#xff01;你好这里是ky233的主页&#xff1a;这里是ky233的主页&#xff0c;欢迎光临~https://blog.csdn.net/ky233?typeblog 点个关注不迷路⌯▾⌯ 实现一个简单的对话发消息的功能&#xff01; 目录…

力扣---腐烂的橘子

题目&#xff1a; bfs思路&#xff1a; 感觉bfs还是很容易想到的&#xff0c;首先定义一个双端队列&#xff08;队列也是可以的~&#xff09;&#xff0c;如果值为2&#xff0c;则入队列&#xff0c;我这里将队列中的元素定义为pair<int,int>。第一个int记录在数组中的位…

毅速3D打印随形透气钢:模具困气排气革新之选

在注塑生产过程中&#xff0c;模具内的气体若无法有效排出&#xff0c;往往会引发困气现象&#xff0c;导致产品表面出现气泡、烧焦等瑕疵。这些瑕疵不仅影响产品的美观度&#xff0c;更可能对其性能造成严重影响&#xff0c;甚至导致产品报废&#xff0c;从而增加生产成本。 传…

【C语言】linux内核tcp_write_xmit和tcp_write_queue_purge

tcp_write_xmit 一、讲解 这个函数 tcp_write_xmit 是Linux内核TCP协议栈中的一部分&#xff0c;其基本作用是发送数据包到网络。这个函数会根据不同情况推进发送队列的头部&#xff0c;确保只要远程窗口有空间&#xff0c;就可以发送数据。 下面是对该函数的一些主要逻辑的中…

C语言--函数指针变量和函数指针数组的区别(详解)

函数指针变量 函数指针变量的作用 函数指针变量是指向函数的指针&#xff0c;它可以用来存储函数的地址&#xff0c;并且可以通过该指针调用相应的函数。函数指针变量的作用主要有以下几个方面&#xff1a; 回调函数&#xff1a;函数指针变量可以作为参数传递给其他函数&…

基于pytorch的视觉变换器-Vision Transformer(ViT)的介绍与应用

近年来&#xff0c;计算机视觉领域因变换器模型的出现而发生了革命性变化。最初为自然语言处理任务设计的变换器&#xff0c;在捕捉视觉数据的空间依赖性方面也显示出了惊人的能力。视觉变换器&#xff08;Vision Transformer&#xff0c;简称ViT&#xff09;就是这种变革的一个…

链表基础知识详解

链表基础知识详解 一、链表是什么&#xff1f;1.链表的定义2.链表的组成3.链表的优缺点4.链表的特点 二、链表的基本操作1.链表的建立2.链表的删除3.链表的查找4.链表函数 一、链表是什么&#xff1f; 1.链表的定义 链表是一种物理存储单元上非连续、非顺序的存储结构&#xf…

人工智能|机器学习——K-means系列聚类算法k-means/ k-modes/ k-prototypes/ ......(划分聚类)

1.k-means聚类 1.1.算法简介 K-Means算法又称K均值算法&#xff0c;属于聚类&#xff08;clustering&#xff09;算法的一种&#xff0c;是应用最广泛的聚类算法之一。所谓聚类&#xff0c;即根据相似性原则&#xff0c;将具有较高相似度的数据对象划分至同一类簇&#xff0c;…

【Docker】golang使用DockerFile正确食用指南

【Docker】golang使用DockerFile正确食用指南 大家好 我是寸铁&#x1f44a; 总结了一篇golang使用DockerFile正确食用指南✨ 喜欢的小伙伴可以点点关注 &#x1f49d; 问题背景 今天寸铁想让编写好的go程序在docker上面跑&#xff0c;要想实现这样的效果&#xff0c;就需要用…

流放者柯南服务器端搭建!

这是一个开放世界生存游戏。在这个游戏里&#xff0c;你可以建造自己的城堡&#xff0c;探索神秘的遗迹&#xff0c;与野兽和敌人战斗&#xff0c;甚至成为一个神。 首先推荐服务器配置&#xff1a; 4核16G 月50 季度200 8核32G 月120 季度350 含安装搭建服务&#xff01…

《剑指 Offer》专项突破版 - 面试题 76 : 数组中第 k 大的数字(C++ 实现)

目录 详解快速排序 面试题 76 : 数组中第 k 大的数字 详解快速排序 快速排序是一种非常高效的算法&#xff0c;从其名字可以看出这种排序算法最大的特点是快。当表现良好时&#xff0c;快速排序的速度比其他主要对手&#xff08;如归并排序&#xff09;快 2 ~ 3 倍。 快速排…

WordPress高端后台美化WP Adminify Pro优化版

后台UI美化WP Adminify Pro修改自定义插件&#xff0c;适合建站公司和个人使用&#xff0c;非常高大上&#xff0c;下载地址&#xff1a;WP Adminify Pro优化版 修复记录&#xff1a; 1、修复已知BUG 2、修复手机版兼容问题 3、修复打开速度&#xff0c;原版打开速度太慢 4…

Git的基本操作(安装Git,创建本地仓库,配置Git,添加、修改、回退、撤销修改、删除文件)

文章目录 一、Git安装二、创建本地仓库三、配置Git四、认识工作区、暂存区、本地库五、添加文件六、修改文件七、版本回退八、撤销修改1.对于⼯作区的代码&#xff0c;还没有add2.已经add&#xff0c;但没有commit3.已经add&#xff0c;并且已经commit 九、删除⽂件 一、Git安装…

解释区块链技术的应用场景、优势及经典案例

目录 1.区块链应用场景 2.区块链优势 3.区块链经典案例 区块链技术是一种分布式账本技术&#xff0c;它通过加密和安全验证机制&#xff0c;允许网络中的多个参与者之间进行可信的、不可篡改的交易和数据的记录与传输。区块链技术的应用场景广泛&#xff0c;其优势也十分显著…