AI安全白皮书 | “深度伪造”产业链调查以及四类防御措施

news2024/11/18 5:52:19

以下内容,摘编自顶象防御云业务安全情报中心正在制作的《“深度伪造”视频识别与防御白皮书》,对“深度伪造”感兴趣的网友,可在文章留言中写下邮箱,在该白皮书完成后,会为您免费寄送一份电子版。

“深度伪造”就是创建高度逼真的虚假视频或虚假录音,然后就可以盗用身份、传播错误信息、制作虚假数字内容。

2024年1月,香港一家跨国公司员工遭遇钓鱼诈骗损失2亿港元;2023年12月,一名留学生在境外被“绑架”,父母遭“绑匪”索要500万元赎金;两个案件均为“深度伪造”欺诈。

图片

毕马威一份报告显示,在线提供的“深度伪造”视频同比增长了900%。另据 bandeepfakes的一项数据显示,“深度伪造”色情内容就占所有在线“深度伪造”视频的 98%,几乎都是针对女性的。

图片


“深度伪造”视频的产业链

生物识别公司iProov的一份新报告显示,利用“深度伪造”制作虚假图像和视频的诈骗分子最常 SwapFace、DeepFaceLive 和 Swapstream等工具进行创建虚假的图像和视频。

图片

这些工具与模拟器(能够改变所在位置的经纬度,实现任何地方的瞬间“穿越”)、改机软件(诈骗分子利用改机工具能够伪造出来设备的属性信息)、IP秒拨(能够快速无缝切换国内国外不同区域的 IP 地址)等工具相结合,就能够绕过安全体系的检测,让这些“深度伪造”视频能够进入远程会议、工作网络、社交平台等不同渠道,然后就可以进行各类欺诈行动。

随着网络犯罪即服务(Cybercrime as-a-Service)的出现,由此导致普通人也可以轻松访问地购买到“深度伪造”的服务或技术。调查发现, GitHub(软件项目托管平台,用于托管和管理开发项目的代码存储库、协作和版本控制的最大基于 Web 的平台)上,有超过 3000 个与 “深度伪造”技术相关的存储库,表明其广泛的开发和分发潜力。

在国外某个暗网工具上,拥有近千个提供“深度伪造”的频道或群组。从虚假视频自助制作到个性化定制,应有尽有。这些“深度伪造”服务的定价各不相同,价格最低的“深度伪造”视频只需要2 美元,而需求复杂的一个“深度伪造”视频要100美元起,易用性使得犯罪分子更容易进行“深度伪造”欺诈。

图片


“深度伪造”视频的制作步骤

“深度伪造”涉及 AI 算法和深度学习。总体来看,创建一个“深度伪造”视频涉及如下过程。

1、收集数据。收集目标任务的大量数据,包含多角度的人脸照片、工作信息、生活信息等,其中在公开的社交媒体采集到大量图片、信息和视频。

2、特征提取。利用深度学习算法,精准地识别并提取出如眼睛、鼻子、嘴巴等关键面部特征。

图片

3、人像合成。将目人脸覆盖、融合到需要伪造视频中的任务的脸上,对齐面部特征,以确保它们在源和目标之间匹配、替换。

4、声音处理。用机器学习和人工智能以惊人的准确性复制一个人的声音,例如音高、语气和说话风格,并将视频中的嘴唇动作与合成语音相匹配。

5、环境渲染。使用照明和颜色工具,进一步完善视频中人物、语音、动作与环境、服饰的协调匹配。

6、视频合成导出,然后就可以用于在线播放、实时直播、视频会议等等诈骗行为。

图片

防范“深度伪造”的难点

识别难。已经发展到可以令人信服地生成逼真的个人模拟的地步,这使得区分真假内容变得越来越困难,除非接受过专门培训,否则很难被人识别出来,意识到这种威胁是防御它的第一步。

检测难。“深度伪造”质量的提高,检测是一大难题。不仅肉眼无法有效识别,一些常规的检测工具也不能及时发现。

追踪难。没有数字指纹,没有明确的数字线索可循,没有IP地址可以列入黑名单,甚至没有直接的恶意软件签名可以检测时,传统的网络安全措施无法有效防护。

图片

更可怕的是,“深度伪造”的危险不仅在于技术,还在于其所促成的整个诈骗生态系统。“深度伪造”的欺诈生态通过一个由机器人、虚假账户和匿名服务组成的错综复杂的网络运作,所有这些都旨在制作、放大和分发捏造的信息和内容。这是数字时代的一种游击战形式,在这个威胁体系中,攻击者看不见且难以捉摸。他们不仅制作信息,还操纵每个参与者感知的现实结构。所以,打击“深度伪造”欺诈需,不仅需要技术对策,更需要复杂的心理战和公众安全意识。

图片


防御“深度伪造”欺诈的四重措施

随着技术的进步,检测识别“深度伪造”骗局的方法也在不断发展,企业和个人需要通过多种渠道验证身份,采用多重策略来识别与防御“深度伪造”欺诈。

1、行为与生物识别

(1)在视频对话的时候,可以要求对方摁鼻子、摁脸观察其面部变化,如果是真人的鼻子,按下去是会变形的。也可以要求对方吃食物、喝水,观察脸部变化。或者,要求做一些奇怪的动作或表情,比如,要求对方挥手、做某个难做的手势等,以辨别真假。在挥手的过程中,会造成面部的数据的干扰,会产生一定的抖动或者是一些闪烁,或者是一些异常的情况。在一对一的沟通中可以问一些只有对方知道的问题,验证对方的真实性。同时,当有人在视频或录音中提出汇款要求时,必须致电或从其他渠道一再核实。

(2)在点对点的沟通中可以问一些只有对方才知道的问题,以验证对方的真实性。

(3)“深度伪造”可以复制声音,但也可能包含不自然的语调、节奏或微妙的失真,仔细聆听后会显得格外突出。同时,语音分析软件可以帮助识别语音异常。

(4)在涉及文件的情况下,自动文档验证系统可以分析文档是否存在不一致之处,例如字体更改或布局差异。

图片

2、设备和账号识别

(1)数字签名和区块链账本具有唯一性,可以对行为来源跟踪,并对其进行标记以供审查。

(2)对设备信息、地理位置以及行为操作进行比对识别,能够发现并防范异常操作。顶象设备指纹通过对设备指纹的记录和比对,可以辨别合法用户和潜在的欺诈行为。其对每个设备进行唯一标识和识别的技术,识别出虚拟机、代理服务器、模拟器等被恶意操控的设备,分析设备是否存在多账号登录、是否频繁更换IP地址、频繁更换设备属性等出现异常或不符合用户习惯的行为,帮助追踪和识别欺诈者的活动。

(3)账号异地登录、更换设备、更换手机号、休眠账户突然活跃等等,需要加强频繁验证;此外,会话期间的持续身份验证至关重要,保持持久性检查以确保用户的身份在使用期间保持一致。顶象无感验证可以快速准确地区分操作者是人还是机器,精准识别欺诈行为,实时监控并拦截异常行为。此外,基于最小权限原则限制对敏感系统和账户的访问,确保访问其角色所需的资源,从而减少账户被盗用的潜在影响。

(4)基于人工审查与AI技术相结合的人脸反欺诈系统,防范“深度伪造”的虚假视频。顶象全链路全景式人脸安全威胁感知方案,能够有效检测发现虚假视频。它通过人脸环境监测信息、活体识别、图像鉴伪、智能核实等多维度信息对用户人脸图像进行智能风险评估、风险评级,迅速识别虚假认证风险。顶象全链路全景式人脸安全威胁感知方案,针对人脸识别场景及关键操作的实时风险监测,针对性地监测如摄像头遭劫持、设备伪造、屏幕共享等行为,并触发主动防御机制进行处置。在发现伪造视频或异常人脸信息后,该方案系统支持自动执行防御策略,设备执行命中防御策略之后对应的防御处置,可以有效阻断风险操作。

图片

3、AI识别与取证

(1)基于深度学习的生成对抗网络(GAN)能够训练一种称之为“鉴别器”神经网络模型,可识别真实版本和创建版本之间的任何差异。大数据模型可以快速分析大量视频和音频数据,以超出人类能力的速度识别异常。并且,机器学习模型可以识别“深度伪造”生产算法的特征模式,从而识别“深度伪造”的内容。而且机器学习模型可以重新训练和调整,保持实时的迭代进化。

(2)AI取证工具在调查和归因“深度伪造”内容方面发挥着至关重要的作用,这些工具分析数字足迹、元数据和创建过程中留下的其他痕迹,帮助识别攻击者的来源并协助法律调查。

4、社交防范与公众教育

(1)减少或者杜绝在社交媒体上分享账户、家庭家人、交通出行、工作岗位等敏感信息,防范欺诈分子盗用下载后,进行图片和声音的“深度伪造”,而后进行身份伪造。

(2)持续对公众进行“深度伪造”技术及其相关风险的教育至关重要,鼓励公众保持警惕并快速报告异常情况,也可以显著提高组织检测和响应“深度伪造”威胁的能力。

技术在不断发展,新的欺诈也在不断涌现。尽可能随时了解AI和“深度伪造”技术的最新发展,以相应地调整保障措施。对 AI 模型的持续研究、开发和更新对于在日益复杂的“深度伪造”技术中保持领先地位至关重要。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1499159.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

OpenCV开发笔记(七十六):相机标定(一):识别棋盘并绘制角点

若该文为原创文章,转载请注明原文出处 本文章博客地址:https://blog.csdn.net/qq21497936/article/details/136535848 各位读者,知识无穷而人力有穷,要么改需求,要么找专业人士,要么自己研究 红胖子(红模仿…

排序算法——梳理总结

✨冒泡 ✨选择 ✨插入  ✨标准写法  &#x1f3ad;不同写法 ✨希尔排序——标准写法 ✨快排 ✨归并 ✨堆排 ✨冒泡 void Bubble(vector<int>& nums) {// 冒泡排序只能先确定最右边的结果&#xff0c;不能先确定最左边的结果for (int i 0; i < nums.size(); i){…

1.2_2 OSI参考模型

文章目录 1.2_2 OSI参考模型一、概述&#xff08;一&#xff09;ISO/OSI参考模型是怎么来的&#xff1f;&#xff08;二&#xff09;ISO/OSI参考模型&#xff08;三&#xff09;ISO/OSI参考模型解释通信过程 二、各层功能及协议&#xff08;一&#xff09;应用层&#xff08;第…

微服务day06-Docker

Docker 大型项目组件较多&#xff0c;运行环境也较为复杂&#xff0c;部署时会碰到一些问题&#xff1a; 依赖关系复杂&#xff0c;容易出现兼容性问题 开发、测试、生产环境有差异 1.什么是Docker? 大型项目组件很多&#xff0c;运行环境复杂&#xff0c;部署时会遇到各种…

java集合类常用的方法介绍

在 Java 中&#xff0c;集合&#xff08;Collections&#xff09;是用于存储多个元素的容器。Java Collections Framework 提供了丰富的集合类&#xff0c;用于满足不同的数据存储需求。以下是一些常用的 Java 集合类及其常用方法&#xff0c;以及简单的例子来说明它们的用法。…

最佳牛围栏(二分 + 前缀和)

最佳牛围栏 原题链接&#xff1a;https://www.acwing.com/problem/content/104/ 题目 思路 我们发现若是枚举答案的话&#xff0c;那么我们判断是否存在一个平均值大于等于mid&#xff0c;如果最优解是x&#xff0c;那么mid < x的时候&#xff0c;必然可以找到一段&#x…

【文件增量备份系统】使用Mysql的流式查询优化数据清理性能(针对百万量级数据)

文章目录 功能介绍原始方案测试 流式处理测试 功能可用性测试 功能介绍 清理功能的作用是&#xff1a;扫描数据库中已经备份过的文件&#xff0c;查看数据源中是否还有相应的文件&#xff0c;如果没有&#xff0c;说明该文件被删除了&#xff0c;那相应的&#xff0c;也需要将…

buuctf EasyBypass --不会编程的崽

buu后边的题有些确实难&#xff0c;有些其实也没那么复杂。昨天做一道异或绕过的题&#xff0c;现在还没看懂QAQ 先来一题简单的吧。哎&#xff0c;随缘更新吧 <?phphighlight_file(__FILE__);$comm1 $_GET[comm1]; $comm2 $_GET[comm2];if(preg_match("/\|\|\\|\…

新规正式发布 | 百度深度参编《生成式人工智能服务安全基本要求》

2024年2月29日&#xff0c;全国网络安全标准化技术委员会&#xff08; TC260 &#xff09;正式发布《生成式人工智能服务安全基本要求》&#xff08;以下简称《基本要求》&#xff09;。《基本要求》规定了生成式人工智能服务在安全方面的基本要求&#xff0c;包括语料安全、模…

弱电综合布线:连接现代生活的纽带

在当今信息化快速发展的时代&#xff0c;弱电网络布线作为信息传输的重要基础设施&#xff0c;其作用日益凸显。它不仅保障了数据的高效流通&#xff0c;还确保了通信的稳定性。从商业大厦到教育机构&#xff0c;从政府机关到医院急救中心&#xff0c;再到我们居住的社区&#…

【开课】云贝教育2024年3月9日-PostgreSQL中级工程师PGCE认证培训开课啦!

课程介绍 根据学员建议和市场需求,规划和设计了《PostgreSQL CE 认证课程》,本课程以内部原理、实践实战为主&#xff0c;理论与实践相结合。课程包含PG 简介、安装使用、服务管理、体系结构等基础知识。同时结合一线实战案例&#xff0c; 面向 PG 数据库的日常维护管理、服务和…

如何远程访问电脑文件?

远程访问电脑文件是当今数字化时代中十分常见且实用的技术。它允许我们从任何地方的计算机或移动设备访问和操作我们的电脑中的文件。无论是远程工作、远程学习、远程协作还是方便地获得自己计算机上的重要文件&#xff0c;远程访问电脑文件都为我们提供了巨大的便利。 在远程访…

从 iPhone 15/15 Pro 恢复丢失数据的 3 种方法

毫无疑问&#xff0c; iPhone 15 是迄今为止最令人印象深刻的 iPhone 。另一方面&#xff0c;我们知道&#xff0c;设备上保存的数据无论多么可靠&#xff0c;在设备使用过程中都可能因各种原因而丢失。 由于这些设备的性质&#xff0c;您在使用 iPhone 15、iPhone 15 Pro 或 …

大语言模型系列-GPT-2

文章目录 前言一、GPT-2做的改进二、GPT-2的表现总结 前言 《Language Models are Unsupervised Multitask Learners&#xff0c;2019》 前文提到&#xff0c;GPT-1利用不同的模型结构微调初步解决了多任务学习的问题&#xff0c;但是仍然是预训练微调的形式&#xff0c;GPT-…

[密码学]Base64编码

一、相关指令 1. 查看工具版本号 base64 --version2. 对字符串加密 echo 字符串 | base64 echo "Hello base64" | base643. 对字符串解密 echo 字符串 |base64 -d echo "SGVsbG8gTGV0aWFuLVJTQQo" | base64 -d4. 对文件加密 base64 文件名 base64 tex…

【Vue 3】

v-model 作用&#xff1a;给表单元素使用&#xff0c;双向数据绑定---->可以快速获取或设置表单元素内容 是value属性和input事件的合写 数据变化--->视图自动更新试图变化--->数据自动更新 语法&#xff1a;v-model"变量" 数据变&#xff0c;视图跟着变…

【你也能从零基础学会网站开发】Web建站之HTML+CSS入门篇 常用HTML标签(2)

&#x1f680; 个人主页 极客小俊 ✍&#x1f3fb; 作者简介&#xff1a;web开发者、设计师、技术分享 &#x1f40b; 希望大家多多支持, 我们一起学习和进步&#xff01; &#x1f3c5; 欢迎评论 ❤️点赞&#x1f4ac;评论 &#x1f4c2;收藏 &#x1f4c2;加关注 超级链接标…

遗传算法优化BP神经网络时间序列回归分析,ga-bp回归分析

目录 BP神经网络的原理 BP神经网络的定义 BP神经网络的基本结构 BP神经网络的神经元 BP神经网络的激活函数, BP神经网络的传递函数 遗传算法原理 遗传算法主要参数 遗传算法流程图 完整代码包含数据下载链接: 遗传算法优化BP神经网络时间序列回归分析,ga-bp回归分析(代码完…

实现的一个网页版的简易表白墙

实现的一个网页版的表白墙 实现效果 代码截图 相关代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><tit…

Java面试(4)之 Spring Bean生命周期过程

一, 整个加载的完整链路图 更详细的生命周期函数链路图(仅供参考) 二, Bean实例化的四种方式: 1, 无参构造器(默认且常用)6 2, 静态工厂方法方式(factory-method指定实例化的静态方法) 3, 实例工厂方法方式(factory-bean指定bean的name,factory-method指定实例化方法) 4, 实…