基于深度学习的苹果叶片病害检测系统(含UI界面、yolov8、Python代码、数据集)

news2025/1/20 3:49:30

在这里插入图片描述

在这里插入图片描述

项目介绍

项目中所用到的算法模型和数据集等信息如下:

算法模型:
    yolov8

    yolov8主要包含以下几种创新:
        1. 可以任意更换主干结构,支持几百种网络主干。

数据集:
    网上下载的数据集,格式都已转好,可直接使用。

以上是本套代码的整体算法架构和对目标检测模型的修改说明,这些模型修改可以为您的 毕设、作业等提供创新点和增强模型性能的功能

如果要是需要更换其他的检测模型,请私信。

注:本项目提供所用到的所有资源,包含 环境安装包、训练代码、测试代码、数据集、视频文件、 界面UI文件等。


本人声明:所有的系统,都是本人自己编写代码,我不是二次售卖的二手贩子,我是有售后的,本人亲自语音或者远程解决问题。最近发现有一些专门卖毕设的,购买我的系统后,进行二次售卖,而且价格贵很多,大家注意辨别。我敢保证说,外面见到的有这种美观界面的,都是从我这购买后,要么稍微改了一丢丢布局,要么,一点都没改,就直接卖的,都是打着有售后的旗子,最后啥也不是,卖给你就没有后续了。

不要问我是怎么知道的,有人从二手贩子那买了后,没有售后不管了,最后找到我这来了。。。。😂😂😂😂😂😂

深度学习项目相对来说部署环境,运行比较麻烦,自己不懂,且没有售后,寸步难行。希望大家不要被骗。


项目简介

本文将详细介绍如何以官方yolov8为主干,通过水稻的叶片的实现对苹果叶片病害的检测识别,且利用PyQt5设计了简约的系统UI界面。在界面中,您可以选择自己的视频文件、图片文件进行检测。此外,您还可以更换自己训练的主干模型,进行自己数据的检测。

该系统界面优美,检测精度高,功能强大。它具备多目标实时检测,同时可以自由选择感兴趣的检测目标。

本博文提供了完整的Python程序代码和使用教程,适合新入门的朋友参考。您可以在文末的下载链接中获取完整的代码资源文件。以下是本博文的目录:

目录

  • 项目介绍
  • 项目简介
  • 效果展示:
  • 🌟一、环境安装
  • 🌟二、数据集介绍
  • 🌟三、 目标检测介绍
    • yolov8相关介绍
  • 四、 yolov8训练步骤
    • 五、 yolov8评估步骤
    • 六、 训练结果
  • 🌟下载链接

效果展示:

功能:
1. 支持单张图片识别
2. 支持遍历文件夹识别
3. 支持识别视频文件
4. 支持结果导出(xls、csv两种格式)
5. 支持切换检测到的目标

基于深度学习的苹果叶片病害检测系统


🌟一、环境安装

本项目提供所有需要的环境安装包(python、pycharm、cuda、torch等),可以直接按照视频讲解进行安装。讲解是以其他项目为例的,但是都是通用的,按照视频步骤操作即可。 点击上方效果展示的视频,跳转到B站就能看到环境安装视频。

在这里插入图片描述

上面这个方法,是比较便捷的安装方式(省去了安装细节),按照我的视频步骤和提供的安装包安装即可,如果要是想要多学一点东西,可以按照下面的安装方式走一遍,会更加熟悉。

环境安装方法2:
追求快速安装环境的,只看上面即可!!!

下面列出了5个步骤,是完全从0开始安装(可以理解为是一台新电脑,没有任何环境),如果某些步骤已经安装过的可以跳过。下面的安装步骤带有详细的视频讲解和参考博客,一步一步来即可。另外视频中讲解的安装方法是通用的,可用于任何项目

  1. python环境安装:B站视频讲解
  2. cuda、cudnn安装:B站视频讲解
  3. torch安装: B站视频讲解
  4. pycharm安装: B站视频讲解
  5. 第三方依赖包安装: B站视频讲解

按照上面的步骤安装完环境后,就可以直接运行程序,看到效果了。


🌟二、数据集介绍

数据集总共包含以下类别,且已经分好 train、val、test文件夹,也提供转好的yolo格式的标注文件,可以直接训练使用。

数据样式如下:

在这里插入图片描述


🌟三、 目标检测介绍

yolov8相关介绍

YOLOv8 是一个 SOTA 模型,它建立在以前 YOLO 版本的成功基础上,并引入了新的功能和改进,以进一步提升性能和灵活性。具体创新包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行。

不过 ultralytics 并没有直接将开源库命名为 YOLOv8,而是直接使用 ultralytics 这个词,原因是 ultralytics 将这个库定位为算法框架,而非某一个特定算法,一个主要特点是可扩展性。其希望这个库不仅仅能够用于 YOLO 系列模型,而是能够支持非 YOLO 模型以及分类分割姿态估计等各类任务。
总而言之,ultralytics 开源库的两个主要优点是:

  • 融合众多当前 SOTA 技术于一体

  • 未来将支持其他 YOLO 系列以及 YOLO 之外的更多算法

在这里插入图片描述

网络结构如下:
在这里插入图片描述


四、 yolov8训练步骤

此代码的训练步骤极其简单,不需要修改代码,直接通过cmd就可以命令运行,命令都已写好,直接复制即可,命令如下图:
在这里插入图片描述

下面这条命令是 训练 以 yolov8的cspdarknet53为主干模型的的命令,复制下来,直接就可以运行,看到训练效果。

python ./train.py --epochs 300 --yaml ultralytics/cfg/models/v8/cls_self/yolov8-cls.yaml --imgsz 300 --cfg ultralytics/cfg/default.yaml --data ../../data/corn--weights weights/yolov8s.pt --workers 8 --batch 128


执行完上述命令后,即可完成训练,训练过程如下:
在这里插入图片描述

下面是对命令中各个参数的详细解释说明:

  • python: 这是Python解释器的命令行执行器,用于执行后续的Python脚本。

  • ./train.py: 这是要执行的Python脚本文件的路径和名称,它是用于训练目标检测模型的脚本。

  • --epochs 500: 这是训练的总轮数(epochs),指定为500,表示训练将运行500个轮次。

  • --cfg models/yolov8-cls-resnet18.yaml: 这是YOLO模型的配置文件的路径和名称,它指定了模型的结构和参数设置。

  • --hyp data/hyps/hyp.scratch-low.yaml: 这是超参数文件的路径和名称,它包含了训练过程中的各种超参数设置,如学习率、权重衰减等。

  • --data ../../data/data: 这是数据集的配置文件的路径和名称,它指定了训练数据集的相关信息,如类别标签、图像路径等。

  • --weight weights/yolov5s.pt: 这是预训练权重文件的路径和名称,用于加载已经训练好的模型权重以便继续训练或进行迁移学习。

  • --workers 4: 这是用于数据加载的工作进程数,指定为4,表示使用4个工作进程来加速数据加载。

  • --batch 16: 这是每个批次的样本数,指定为16,表示每个训练批次将包含16个样本。

通过运行上面这个命令,您将使用YOLOv5模型对目标检测任务进行训练,训练500个轮次,使用指定的配置文件、超参数文件、数据集配置文件和预训练权重。同时,使用4个工作进程来加速数据加载,并且每个训练批次包含16个样本。


五、 yolov8评估步骤

评估步骤同训练步骤一样,执行1行语句即可,注意--weights需要变为自己想要测试的模型路径, VOC_fruit.yaml替换为自己的数据集的yaml文件。

python ./val.py --data  ../../data/corn--weight ../weights/YOLOv8-cls/weights/best.pt --imgsz 300

评估结果如下:
在这里插入图片描述


六、 训练结果

我们每次训练后,会在 run/train 文件夹下出现一系列的文件,如下图所示:
在这里插入图片描述


🌟下载链接

   该代码采用Pycharm+Python3.8开发,经过测试能成功运行,运行界面的主程序为main.py,提供用到的所有程序。为确保程序顺利运行,请按照requirements.txt配置Python依赖包的版本。Python版本:3.8,为避免出现运行报错,请勿使用其他版本,详见requirements.txt文件;

    若您想获得博文中涉及的实现完整全部程序文件(包括训练代码、测试代码、训练数据、测试数据、视频,py、 UI文件等,如下图),这里已打包上传至博主的面包多平台,可通过下方项目讲解链接中的视频简介部分下载,完整文件截图如下:
在这里插入图片描述

项目演示讲解链接:B站

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1496095.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

UE4 Niagara 关卡1.4官方案例解析

sprites can face the camera,or they can face any arbitrary vector,in this case the vector between the center of the system and the particle itself(粒子可以面对摄影机,也可以面对任意向量,在这个实例中的向…

为国产信创服务器提供LDAP统一身份认证方案

金融信创作为 8 大行业信创之首,早已成为其他行业信创建设的参考。金融行业有着极为复杂的业务场景,对系统有着极高的稳定可靠需求,因此,在寻找微软 AD 国产化替代方案时,常会涉及到更深层次的场景。例如,最…

免费体验重保利器!AI加持智胜攻防,企业安全巡查活动等你加入

两会时刻,重保启动 今年,亚信安全护航重保 又有新“利器”加持 新增AI智能降噪算法的 “外部攻击面管理”服务 升级加入攻防“编制” 国内TOP级攻防专家团队,亚信安全北极狐高级攻防实验室赋能支撑,正式推出“攻防利器系列行动…

【b站咸虾米】1 Vue介绍 2021最新Vue从基础到实例高级_vue2_vuecli脚手架博客案例

课程地址:【2021最新Vue从基础到实例高级_vue2_vuecli脚手架博客案例】 https://www.bilibili.com/video/BV1pz4y1S7bC/?share_sourcecopy_web&vd_sourceb1cb921b73fe3808550eaf2224d1c155 感觉尚硅谷的Vue看完忘得差不多了,且之前学过咸虾米的unia…

Python与FPGA——sobel边缘检测

文章目录 前言一、sobel边缘检测二、Python sobel边缘检测三、FPGA sobel边缘检测总结 前言 边缘存在于目标、背景区域之间,它是图像分割所依赖的较重要的依据,也是图像匹配的重要特征。边缘检测在图像处理和计算机视觉中,尤其在图像的特征提…

Day37 socket、TCP、UDP

socket类型 流式套接字(SOCK_STREAM) TCP 提供了一个面向连接、可靠的数据传输服务,数据无差错、无重复的发送且按发送顺序接收。内设置流量控制,避免数据流淹没慢的接收方。数据被看作是字节流,无长度限制。 数据报套接字(SOCK_DGRAM) UD…

InnoDB存储引擎对MVCC的实现

MVCC MVCC的目的 在搞清楚MVCC之前,我们要搞懂一个问题,MVCC到底解决的是什么问题? 我用一句话概括,那就是为了解决读-写可以一起的问题! 在我们的印象里,InnoDB可以读读并发,不能读写并发,或者写写并发 这是很正常的想法,因为如果读写并发的化,会有并发问题 而对于写写…

设计模式:什么是设计模式?①

一、什么是设计模式? 1. 是一类程序设计思想 2. 是在大量实践过程中摸索总结出的标准经验提炼 3. 具有多样性和丰富性,不同情况应用的思想不同 二、设计模式的好处 1. 代码生产力和效率的提升 2. 让代码表现更为规整,简洁。阅读维护管理的成本…

InfluxDB SHOW SERIES语句按照什么顺序返回?

本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。 本作品 (李兆龙 博文, 由 李兆龙 创作),由 李兆龙 确认,转载请注明版权。 文章目录 引言样例SHOW SERIES比较原理结论结束语 引言 influxdb的计算引擎为了做到自底而上的…

曲线曲面 - 连续性, 坐标变换矩阵

连续性 有两种:参数连续性(Parametric Continuity)、几何连续性(Geometric Continuity)参数连续性: 零阶参数连续性,记为,指相邻两段曲线在结合点处具有相同的坐标 一阶参数连续性&…

前缀和+哈希表:联手合击Leetcode 560.和为k的子数组

题目 给你一个整数数组 nums 和一个整数 k ,请你统计并返回 该数组中和为 k 的子数组的个数 。 子数组是数组中元素的连续非空序列。 示例 1: 输入:nums [1,1,1], k 2 输出:2示例 2: 输入:nums [1,2…

GPT-4技术解析:与Claude3、Gemini、Sora的技术差异与优势对比

【最新增加Claude3、Gemini、Sora、GPTs讲解及AI领域中的集中大模型的最新技术】 2023年随着OpenAI开发者大会的召开,最重磅更新当属GPTs,多模态API,未来自定义专属的GPT。微软创始人比尔盖茨称ChatGPT的出现有着重大历史意义,不亚…

【笔记】OpenHarmony和HarmonyOS区别及应用开发简介

一、概念 OpenHarmony(OH) : OpenAtom OpenHarmonyHarmonyOS(HO):开发 | 华为开发者联盟 (huawei.com) HO当前最高是3.1,在华为mate 60上面也是。关于4.0、5.0和next这类版本说法都是面向用户的,不是开发人员。对于程序员&#…

算法相关计算

1 内存管理相关 1 .1 float 6.9 f 的内存计算方法 二进制小数的计算: (1)小数的二进制算法和整数的大致相反,就是不断的拿小数部分乘以2取积的整数部分,然后正序排列。比如求0.9的二进制: 0.9*21.8 取 1…

opencv边缘检测之Canny算法

文章目录 简介实战 简介 Canny在1986年提出了一种边缘检测算法,因其卓越的性能和准确性而广泛应用于各种图像分析领域。opencv中提供了这种算法,其操作步骤如下 高斯滤波:采用 5 5 5\times5 55的高斯核函数进行滤波,对图像进行…

chrome插件chrome.storage数据写入失败QUOTA_BYTES_PER_ITEM quota exceeded

Unchecked runtime.lastError while running storage.set: QUOTA_BYTES_PER_ITEM quota exceeded at Object.callback 在开发浏览器插件的时候,报错提示:超出存储限制,浏览器插件存储官方文档:https://developer.chrome.com/docs…

selinux规则

selinux状态 相关命令 进程要和文件的安全上下文相匹配,进程才能打开文件 查找这个命令从哪个安装包来的用 yum provides 命令 进程httpd 必须与ls -Z的文件类型一致,要不然在强制模式下面,打开不了 在终端2用此命令,把文件类型改…

【Ubuntu】将多个python文件打包为.so文件

1.为什么要将python打包为.so文件? 保护源码 2.实战例子 a.安装相应的包 pip install cython 验证安装是否成功 cython --version b.实战的文件目录和内容 hi.py # This is a sample Python script.# Press ShiftF10 to execute it or replace it with your…

基于OpenCV的图形分析辨认01

目录 一、前言 二、实验目的 三、实验内容 四、实验过程 一、前言 编程语言:Python,编程软件:vscode或pycharm,必备的第三方库:OpenCV,numpy,matplotlib,os等等。 关于OpenCV&…

Docker的镜像操作

目录 镜像的操作(**开头为常用请留意) 镜像查找 **拉取镜像 **推送镜像 **查看镜像 **修改镜像名称 **查看镜像的详细信息 ​编辑 删除镜像 查看所有镜像ID 删除全部镜像 **查看镜像的操作历史 镜像迁移 镜像打包 远程发送镜像(需要先打包) 本地镜像tar包恢复 镜像过…