Redis缓存【重点】

news2024/12/23 4:05:41

参考链接
https://xiaolincoding.com/redis/cluster/cache_problem.html#%E7%BC%93%E5%AD%98%E9%9B%AA%E5%B4%A9

目录

  • 缓存雪崩
    • 大量数据同时过期
    • Redis 故障宕机
  • 缓存击穿
    • 第一种方案,非法请求的限制
    • 第二种方案,缓存空值或者默认值
    • ==第三种方案,使用布隆过滤器快速判断数据是否存在,避免通过查询数据库来判断数据是否存在。==
  • 总结

在这里插入图片描述

缓存雪崩

概念:当大量缓存数据在同一时间过期(失效)或者 Redis 故障宕机时,如果此时有大量的用户请求,都无法在 Redis 中处理,于是全部请求都直接访问数据库,从而导致数据库的压力骤增,严重的会造成数据库宕机,从而形成一系列连锁反应,造成整个系统崩溃,这就是缓存雪崩的问题。
原因:

  • 大量数据同时过期;
  • Redis 故障宕机;
    在这里插入图片描述
    不同的诱因,应对的策略也会不同。

大量数据同时过期

  • 均匀设置过期时间;
  • 互斥锁;
  • 后台更新缓存;

1. 均匀设置过期时间

如果要给缓存数据设置过期时间,应该避免将大量的数据设置成同一个过期时间。我们可以在对缓存数据设置过期时间时,给这些数据的过期时间加上一个随机数,这样就保证数据不会在同一时间过期。

2. 互斥锁

当业务线程在处理用户请求时,如果发现访问的数据不在 Redis 里,就加个互斥锁,保证同一时间内只有一个请求来构建缓存(从数据库读取数据,再将数据更新到 Redis 里),当缓存构建完成后,再释放锁。未能获取互斥锁的请求,要么等待锁释放后重新读取缓存,要么就返回空值或者默认值。

实现互斥锁的时候,最好设置超时时间,不然第一个请求拿到了锁,然后这个请求发生了某种意外而一直阻塞,一直不释放锁,这时其他请求也一直拿不到锁,整个系统就会出现无响应的现象。

3. 后台更新缓存

业务线程不再负责更新缓存,缓存也不设置有效期,而是让缓存“永久有效”,并将更新缓存的工作交由后台线程定时更新。

事实上,缓存数据不设置有效期,并不是意味着数据一直能在内存里,因为当系统内存紧张的时候,有些缓存数据会被“淘汰”,而在缓存被“淘汰”到下一次后台定时更新缓存的这段时间内,业务线程读取缓存失败就返回空值,业务的视角就以为是数据丢失了。

解决上面的问题的方式有两种。

第一种方式,后台线程不仅负责定时更新缓存,而且也负责频繁地检测缓存是否有效,检测到缓存失效了,原因可能是系统紧张而被淘汰的,于是就要马上从数据库读取数据,并更新到缓存。

这种方式的检测时间间隔不能太长,太长也导致用户获取的数据是一个空值而不是真正的数据,所以检测的间隔最好是毫秒级的,但是总归是有个间隔时间,用户体验一般。

第二种方式,在业务线程发现缓存数据失效后(缓存数据被淘汰),通过消息队列发送一条消息通知后台线程更新缓存,后台线程收到消息后,在更新缓存前可以判断缓存是否存在,存在就不执行更新缓存操作;不存在就读取数据库数据,并将数据加载到缓存。这种方式相比第一种方式缓存的更新会更及时,用户体验也比较好。

在业务刚上线的时候,我们最好提前把数据缓起来,而不是等待用户访问才来触发缓存构建,这就是所谓的缓存预热,后台更新缓存的机制刚好也适合干这个事情。

Redis 故障宕机

针对 Redis 故障宕机而引发的缓存雪崩问题,常见的应对方法有下面这几种:

  • 服务熔断或请求限流机制;
  • 构建 Redis 缓存高可靠集群;

1. 服务熔断或请求限流机制

因为 Redis 故障宕机而导致缓存雪崩问题时,我们可以启动服务熔断机制,暂停业务应用对缓存服务的访问,直接返回错误,不用再继续访问数据库,从而降低对数据库的访问压力,保证数据库系统的正常运行,然后等到 Redis 恢复正常后,再允许业务应用访问缓存服务。

服务熔断机制是保护数据库的正常允许,但是暂停了业务应用访问缓存服系统,全部业务都无法正常工作

为了减少对业务的影响,我们可以启用请求限流机制,只将少部分请求发送到数据库进行处理,再多的请求就在入口直接拒绝服务,等到 Redis 恢复正常并把缓存预热完后,再解除请求限流的机制。

2. 构建 Redis 缓存高可靠集群

服务熔断或请求限流机制是缓存雪崩发生后的应对方案,我们最好通过主从节点的方式构建 Redis 缓存高可靠集群。

如果 Redis 缓存的主节点故障宕机,从节点可以切换成为主节点,继续提供缓存服务,避免了由于 Redis 故障宕机而导致的缓存雪崩问题。

缓存击穿

我们的业务通常会有几个数据会被频繁地访问,比如秒杀活动,这类被频地访问的数据被称为热点数据。

概念:如果缓存中的某个热点数据过期了(原因),此时大量的请求访问了该热点数据,就无法从缓存中读取,直接访问数据库,数据库很容易就被高并发的请求冲垮,这就是缓存击穿的问题。
在这里插入图片描述
可以发现缓存击穿跟缓存雪崩很相似,你可以认为缓存击穿是缓存雪崩的一个子集。

应对缓存击穿可以采取前面说到两种方案:

  1. 互斥锁方案,保证同一时间只有一个业务线程更新缓存,未能获取互斥锁的请求,要么等待锁释放后重新读取缓存,要么就返回空值或者默认值。
  2. 不给热点数据设置过期时间,由后台异步更新缓存,或者在热点数据准备要过期前,提前通知后台线程更新缓存以及重新设置过期时间

缓存穿透
当发生缓存雪崩或击穿时,数据库中还是保存了应用要访问的数据,一旦缓存恢复相对应的数据,就可以减轻数据库的压力,而缓存穿透就不一样了。

概念:当用户访问的数据,既不在缓存中,也不在数据库中,导致请求在访问缓存时,发现缓存缺失,再去访问数据库时,发现数据库中也没有要访问的数据,没办法构建缓存数据,来服务后续的请求。那么当有大量这样的请求到来时,数据库的压力骤增,这就是缓存穿透的问题。

在这里插入图片描述
缓存穿透的发生一般有这两种情况:(原因)

  • 业务误操作,缓存中的数据和数据库中的数据都被误删除了,所以导致缓存和数据库中都没有数据;
  • 黑客恶意攻击,故意大量访问某些读取不存在数据的业务;

应对缓存穿透的方案,常见的方案有三种。

第一种方案,非法请求的限制;
第二种方案,缓存空值或者默认值;
第三种方案,使用布隆过滤器快速判断数据是否存在,避免通过查询数据库来判断数据是否存在;

第一种方案,非法请求的限制

当有大量恶意请求访问不存在的数据的时候,也会发生缓存穿透,因此在 API 入口处我们要判断求请求参数是否合理,请求参数是否含有非法值、请求字段是否存在,如果判断出是恶意请求就直接返回错误,避免进一步访问缓存和数据库。

第二种方案,缓存空值或者默认值

当我们线上业务发现缓存穿透的现象时,可以针对查询的数据,在缓存中设置一个空值或者默认值,这样后续请求就可以从缓存中读取到空值或者默认值,返回给应用,而不会继续查询数据库

第三种方案,使用布隆过滤器快速判断数据是否存在,避免通过查询数据库来判断数据是否存在。

我们可以在写入数据库数据时,使用布隆过滤器做个标记,然后在用户请求到来时,业务线程确认缓存失效后,可以通过查询布隆过滤器快速判断数据是否存在,如果不存在,就不用通过查询数据库来判断数据是否存在。

即使发生了缓存穿透,大量请求只会查询 Redis 和布隆过滤器,而不会查询数据库,保证了数据库能正常运行,Redis 自身也是支持布隆过滤器的。

那问题来了,布隆过滤器是如何工作的呢?接下来,我介绍下。

布隆过滤器由「初始值都为 0 的位图数组」和「 N 个哈希函数」两部分组成。当我们在写入数据库数据时,在布隆过滤器里做个标记,这样下次查询数据是否在数据库时,只需要查询布隆过滤器,如果查询到数据没有被标记,说明不在数据库中。

布隆过滤器会通过 3 个操作完成标记:

第一步,使用 N 个哈希函数分别对数据做哈希计算,得到 N 个哈希值;
第二步,将第一步得到的 N 个哈希值对位图数组的长度取模,得到每个哈希值在位图数组的对应位置。
第三步,将每个哈希值在位图数组的对应位置的值设置为 1;
举个例子,假设有一个位图数组长度为 8,哈希函数 3 个的布隆过滤器。

图片

在数据库写入数据 x 后,把数据 x 标记在布隆过滤器时,数据 x 会被 3 个哈希函数分别计算出 3 个哈希值,然后在对这 3 个哈希值对 8 取模,假设取模的结果为 1、4、6,然后把位图数组的第 1、4、6 位置的值设置为 1。当应用要查询数据 x 是否数据库时,通过布隆过滤器只要查到位图数组的第 1、4、6 位置的值是否全为 1,只要有一个为 0,就认为数据 x 不在数据库中。

布隆过滤器由于是基于哈希函数实现查找的,高效查找的同时存在哈希冲突的可能性(解决哈希冲突的方法,后续更新…),比如数据 x 和数据 y 可能都落在第 1、4、6 位置,而事实上,可能数据库中并不存在数据 y,存在误判的情况。

所以,查询布隆过滤器说数据存在,并不一定证明数据库中存在这个数据,但是查询到数据不存在,数据库中一定就不存在这个数据

总结

缓存异常会面临的三个问题:缓存雪崩、击穿和穿透。

其中,缓存雪崩和缓存击穿主要原因是数据不在缓存中,而导致大量请求访问了数据库,数据库压力骤增,容易引发一系列连锁反应,导致系统奔溃。不过,一旦数据被重新加载回缓存,应用又可以从缓存快速读取数据,不再继续访问数据库,数据库的压力也会瞬间降下来。因此,缓存雪崩和缓存击穿应对的方案比较类似。

而缓存穿透主要原因是数据既不在缓存也不在数据库中。因此,缓存穿透与缓存雪崩、击穿应对的方案不太一样。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1489574.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

回溯算法套路②组合型回溯+剪枝【基础算法精讲 15】

学习地址 : 回溯算法套路②组合型回溯剪枝【基础算法精讲 15】_哔哩哔哩_bilibili 回顾 : 从n 个数中选出k个数的组合 , 可以看成是长度固定的子集 ; 剪枝技巧 : 77 . 组合 链接 : . - 力扣(LeetCode) 枚举下一个元素选…

嵌入式中volatile关键字的使用方法

Hi,大家好! 今天我们来学习一下volatile关键字,volatile关键字想必大家在平时编程中都见过或用过。可是小伙伴们有没有想过什么时候需要使用volatile关键字吗? 在C语言中,volatile是一个关键字,用于告诉编译器不要优化…

【MATLAB第97期】基于MATLAB的贝叶斯Bayes算法优化BiGRU双向门控循环单元的多输入单输出回归预测模型,含GRU与BiGRU多层结构优化选择

【MATLAB第97期】基于MATLAB的贝叶斯Bayes算法优化BiGRU双向门控循环单元的多输入单输出回归预测模型,含GRU与BiGRU结构层数优化 前言 前面在【MATLAB第10期】讲解了基于贝叶斯Bayes算法优化LSTM长短期记忆网络的多输入单输出回归预测模型。 本次模型难点包括&am…

ChatGPT数据分析应用——热力图分析

ChatGPT数据分析应用——热力图分析 ​ 热力图分析既可以算作一种可视化方法,也可以算作一种分析方法,主要用于直观地展示数据的分布情况。接下来我们让ChatGPT解释这个方法的概念并提供相应的案例。发送如下内容给ChatGPT。 ​ ChatGPT收到上述内容后&…

[linux]shell脚本语言:变量、测试、控制语句以及函数的全面详解

一、shell的概述 1、shell本质是脚本文件:完成批处理。 shell脚本是一种脚本语言,我们只需使用任意文本编辑器,按照语法编写相应程序,增加可执行权限,即可在安装shell命令解释器的环境下执行。shell 脚本主要用于帮助开…

鸿蒙Harmony应用开发—ArkTS声明式开发(通用属性:无障碍属性)

组件可以设置相应的无障碍属性和事件来更好地使用无障碍能力。 说明: 从API Version 10 开始支持。后续版本如有新增内容,则采用上角标单独标记该内容的起始版本。 accessibilityGroup accessibilityGroup(value: boolean) 无障碍组。 系统能力&#…

机器学习:主成分分析笔记

主成分分析(Principal Component Analysis,PCA)是一种无监督的机器学习算法,通常用于高维数据的降维、提取主要特征、数据降噪和可视化。PCA的基本思想是将原始数据的多个变量转换为少数几个相互独立的变量(即主成分&a…

【Web前端入门学习】——HTML

目录 HTML简介HTML文件结构常用文本标签标题标签段落标签有序列表和无序列表表格标签 HTML属性a标签—超链接标签图片标签 HTML区块块元素与行内元素 HTML表单 HTML简介 HTML全称是Hypertext Markup Language超文本标记语言。 HTML的作用: 为网页提供结构&#xff…

Stream流(Java)

目录 一、介绍 二、Stream流的使用步骤 三、Stream流常见的中间方法 四、Stream流常见的终结方法 一、介绍 Stream也叫Stream流,是JDK8开始新增的一套API,可以用于操作集合或者数组的数据。 优势:Stream流大量的结合了Lambda的语法风格来…

SpringCloud远程调用为啥要采用HTTP

关于SpringCloud远程调用采用HTTP而非RPC。 首先SpringCloud开启Web服务依赖于内部封装的Tomcat容器,而今信息飞速发展,适应大流量的微服务,采用Tomcat处理HTTP请求,开发者编写Json作为资源传输,服务器做出相应的响应&…

解决uni-app中使用webview键盘弹起遮挡input输入框问题

这个平平无奇的回答&#xff0c;可能是全网最靠谱的解决方案。 这里我用的是vue3 setup .vue文件的方式 <view> <web-view :fullscreen"false" :webview-styles"{top: statusBarHeight40,height:height,progress: {color: green,height:1px } }"…

软考57-上午题-【数据库】-数据库的控制功能

一、事务管理 1-1、事务的定义 事务是一个操作序列&#xff0c;这些操作&#xff0c;要么都做&#xff0c;要么都不做。 事务和程序是两个不同的概念&#xff0c;一般一个程序可以包含多个事务。 1-2、事务定义的语句 1、事务开始&#xff1a;BEGIN TRANSACTION 2、事务提…

Vue.js 实用技巧:深入理解 Vue.set 方法

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

交友盲盒系统PHP开源的盲盒源码

源码介绍&#xff1a; 交友盲盒系统是一款基于PHP开发的开源免费盲盒系统&#xff0c;旨在为用户提供一个充满乐趣和惊喜的社交体验。该系统具有丰富的功能和灵活的扩展性&#xff0c;可以轻松地满足各种线上交友、抽奖活动等场景的需求。 安装说明&#xff1a; PHP版本&…

算法沉淀——动态规划之完全背包问题(leetcode真题剖析)

算法沉淀——动态规划之完全背包问题 01.【模板】完全背包02.零钱兑换03.零钱兑换 II04.完全平方数 完全背包问题是背包问题的一种变体&#xff0c;与01背包问题不同&#xff0c;它允许你对每种物品进行多次选择。具体来说&#xff0c;给定一个固定容量的背包&#xff0c;一组物…

IDEA自带 .http 请求工具文档

基础语法 请求格式 基础格式 Method Request-URI HTTP-Version Header-field: Header-valueRequest-Body其中&#xff0c;GET 请求可以省略 Method 不写&#xff1b;HTTP-Version 可以省略不写&#xff0c;默认使用 1.1 版本。 示例&#xff1a; GET https://www.baidu.co…

Kubernetes基础(二十七)-nodePort/targetPort/port/containerPort/hostPort

1 nodePort/targetPort/port/containerPort 1.1 实现层级 1.2 配置方式 ########service########### apiVersion: v1 kind: Service metadata: labels: name: app1 name: app1 namespace: default spec: type: NodePort ports: - <strong>port: 8080 t…

C语言文件操作,linux文件操作,文件描述符,linux下一切皆文件,缓冲区,重定向

目录 C语言文件操作 如何打开文件以及打开文件方式 读写文件 关闭文件 Linux系统下的文件操作 open 宏标志位 write&#xff0c;read&#xff0c;close&#xff0c;lseek接口 什么是当前路径&#xff1f; linux下一切皆文件 文件描述符 文件描述符排序 C语言文件操…

Linux 操作系统概述

GNU计划 GNU --"GNUs Not UNIX" 建立一个自由、开放的UNIX操作系统&#xff08;Free UNIX&#xff09; GNU 通用公共许可证&#xff08;General Public License&#xff0c;GPL&#xff09; ”四项基本自由“ 按照自己的意愿自由地运行该软件自由地学习并根据…

SD-WAN网络中,CPE设备的重要性与选择

在SD-WAN企业组网的部署中&#xff0c;CPE&#xff08;Customer Premises Equipment&#xff09;扮演着至关重要的角色&#xff0c;被称为“企业边缘设备”或“客户端设备”。其作用不仅限于连接网络&#xff0c;更是SD-WAN网络的网关&#xff0c;负责管理多个WAN连接和VPN隧道…