支持向量机 SVM | 线性可分:硬间隔模型公式推导

news2025/1/4 6:14:45

目录

  • 一. SVM的优越性
  • 二. SVM算法推导
    • 小节
    • 概念

在开始讲述SVM算法之前,我们先来看一段定义:

'''
支持向量机(Support VecorMachine, SVM)
	本身是一个二元分类算法,支持线性分类和非线性分类的分类应用,同时通过OvR或者OvO的方式可以应用在多元分类领域中
	能够直接将SVM应用于回归应用中
在不考虑集成学习算法或者特定的数据集时,SVM在分类算法中可以说是一种特别优秀的算法
'''

在这里插入图片描述

一. SVM的优越性

在Logistic回归算法中:
    我们追求是寻找一条决策边界,即找到一条能够正确划分所有训练样本的边界;
    当所有样本正确划分时,损失函数已降至最低,模型不再优化

在SVM算法中:
    我们追求是寻找一条最优决策边界

	那什么是最优呢?
		SVM提出的基本思想是,寻找一条决策边界,使得该边界到两边最近的点间隔最大
		
	这样做得目的在于:
		相比于其他边界,svm寻找到的边界对于样本的局部扰动容忍性最好,对新进样本更容易判断正确;
		也就是说,此时决策边界具有最好的鲁棒性

在这里插入图片描述

二. SVM算法推导

	注意:下面讲述的是线性分类

这里我们换一种思路寻找最佳决策边界:

首先假设决策边界为
y = ω → ⋅ x → + b y= \overrightarrow{\omega }\cdot \overrightarrow{x} +b y=ω x +b

公式解释1:

为什么要这么设方程呢?

我们希望通过向量点乘来确定距离
换句话说,希望通过向量点乘来确定正负样本的边界

在这里插入图片描述

为了寻找最佳决策边界,我们可以:
以上述决策边界为中心线,向两边做平行线,让这两条平行线过两边最近的样本点;此时会形成一条“街道”,最佳决策边界就是使这条街道最宽的那个决策边界。

在这里插入图片描述

补充一点:
在Logistic回归算法中,我们人为的将数据集设为1,0
在SVM算法中,我们人为的将数据集设为1,-1

参数说明:

width:街宽

ω → \overrightarrow{\omega } ω :决策边界的法向量

u − → \overrightarrow{u_{-} } u :街边上的负样本向量

u + → \overrightarrow{u_{+} } u+ :街边上的正样本向量

单位向量: a → ∥ a ∥ \frac{\overrightarrow{a}}{\left \| a \right \| } aa

向量点乘几何的意义:
a → ⋅ b → = ∣ a → ∣ ∣ b → ∣ cos ⁡ θ \overrightarrow{a}\cdot \overrightarrow{b} =\left | \overrightarrow{a} \right| |\overrightarrow{b} | \cos \theta a b = a b cosθ
可以理解为 a → \overrightarrow{a} a b → \overrightarrow{b} b 上的投影长度乘以 ∣ b → ∣ |\overrightarrow{b}| b 的模长
在这里插入图片描述

对于训练集中的任何一个数据,我们总会取到一个合适长度的 ω → \overrightarrow{\omega } ω ,以及一个适合的常数b,得到:
{ ω → ⋅ u + → + b ≥ 1 ω → ⋅ u − → + b ≤ − 1 \left\{\begin{matrix}\overrightarrow{\omega }\cdot \overrightarrow{u_{+} } +b\ge 1 \\\overrightarrow{\omega }\cdot \overrightarrow{u_{-} } +b\le -1 \end{matrix}\right. {ω u+ +b1ω u +b1

即可以合并为: y i ( ω → ⋅ u i → + b ) ≥ 1 y_{i} (\overrightarrow{\omega }\cdot \overrightarrow{u_{i} } +b)\ge1 yi(ω ui +b)1
而对于街边点而言,满足
y i ( ω → ⋅ u i → + b ) = 1 y_{i} (\overrightarrow{\omega }\cdot \overrightarrow{u_{i} } +b)=1 yi(ω ui +b)=1

	注意:这些街边点对于决定决策边界取决定性作用,因此被称为支持向量

这样,我们就可以用数学方式将上述街宽抽象出来:
w i d t h = ( u + → − u − → ) ⋅ w → ∥ w ∥ width = (\overrightarrow{u_{+}}-\overrightarrow{u_{-}} )\cdot \frac{\overrightarrow{w}}{\left \| w \right \| } width=(u+ u )ww
推导式子,就可以进一步得到:

w i d t h = ( u + → − u − → ) ⋅ w → ∥ w ∥ width = (\overrightarrow{u_{+}}-\overrightarrow{u_{-}} )\cdot \frac{\overrightarrow{w}}{\left \| w \right \| } width=(u+ u )ww

        = u + → ⋅ ω → ∥ ω → ∥ − u − → ⋅ ω → ∥ ω → ∥ =\frac{\overrightarrow{u_{+}}\cdot\overrightarrow{\omega _{}} }{\left \| \overrightarrow{\omega\mathrm{} } \right \| }-\frac{\overrightarrow{u_{-}}\cdot\overrightarrow{\omega _{}} }{\left \| \overrightarrow{\omega\mathrm{} } \right \| } =ω u+ ω ω u ω

        = 1 − b ∥ w → ∥ − − 1 − b ∥ w → ∥ =\frac{1-b}{\left \| \overrightarrow{w} \right \| } -\frac{-1-b}{\left \| \overrightarrow{w} \right \| } =w 1bw 1b

        = 2 ∥ w → ∥ =\frac{2}{\left \| \overrightarrow{w} \right \| } =w 2

此时,我们要求街宽最大,即是求 m i n ( ∥ w → ∥ ) min({\left \| \overrightarrow{w} \right \| }) min( w ),这里为了后续求导方便,将值写成 m i n ( 1 2 ∥ w → ∥ 2 ) min(\frac{1}{2}\left \| \overrightarrow{w} \right \| ^{2} ) min(21 w 2)

需要明确,"街边"最大值的条件是基于支持向量的,而支持向量是属于数据集的,因此我们的问题就变成了:
{ m i n ( 1 2 ∥ w → ∥ 2 ) s . t . y i ( ω → ⋅ x → + b ) − 1 ≥ 0 \left\{\begin{matrix}min(\frac{1}{2}\left \| \overrightarrow{w} \right \| ^{2} ) \\s.t. y_{i} (\overrightarrow{\omega }\cdot \overrightarrow{x } +b)-1\ge0 \end{matrix}\right. {min(21 w 2)s.t.yi(ω x +b)10

这是一个典型的条件极值问题,我们用拉格朗日乘数法,得到拉格朗日函数为:
L = 1 2 ∥ w → ∥ 2 − ∑ i = 1 m β i [ y i ( ω → ⋅ x → + b ) − 1 ] , ( β i ≥ 0 ) L = \frac{1}{2}\left \| \overrightarrow{w} \right \| ^{2} -\sum_{i=1}^{m} \beta _{i}[ y_{i} (\overrightarrow{\omega }\cdot \overrightarrow{x } +b)-1] ,(\beta _{i}\ge 0) L=21 w 2i=1mβi[yi(ω x +b)1],(βi0)

这里的约束是不等式约束,所以要使用KKT条件(KKT是拉格朗日乘数法的一种泛化形式,此时 β i ≥ 0 \beta _{i}\ge0 βi0),而KKT条件的计算方式为: max ⁡ β ≥ 0 min ⁡ w , b L ( w , b , β ) \max_{\beta \ge 0} \min_{w,b}L(w,b,\beta ) β0maxw,bminL(w,b,β)

∂ L ∂ w = w − ∑ i = 1 m β i x ( i ) y ( i ) = 0 ⇒ w = ∑ i = 1 m β i x ( i ) y ( i ) \frac{\partial L}{\partial w} =w-\sum_{i=1}^{m} \beta _{i} x^{(i)}y^{(i)}=0\Rightarrow w=\sum_{i=1}^{m} \beta _{i} x^{(i)}y^{(i)} wL=wi=1mβix(i)y(i)=0w=i=1mβix(i)y(i)

∂ L ∂ b = − ∑ i = 1 m β i y ( i ) = 0 ⇒ 0 = ∑ i = 1 m β i y ( i ) \frac{\partial L}{\partial b} =-\sum_{i=1}^{m} \beta _{i}y^{(i)}=0\Rightarrow 0=\sum_{i=1}^{m} \beta _{i} y^{(i)} bL=i=1mβiy(i)=00=i=1mβiy(i)

公式解释:
β \beta β是每个样本对应的拉格朗日乘子

对于非支持向量而言, β = 0 \beta=0 β=0,即对非支持向量无约束

则: y ( i ) ∗ 0 = 0 y^{(i)}*0=0 y(i)0=0

对于支持向量而言, β > 0 \beta>0 β>0,即对支持向量有约束

则: 正样本支持向量 ∗ 1 + 负样本支持向量 ∗ ( − 1 ) = 0 正样本支持向量\ast 1+负样本支持向量\ast (-1)=0 正样本支持向量1+负样本支持向量(1)=0

此时 L ( β ) L(\beta) L(β)为:

L ( β ) = 1 2 ∥ w → ∥ 2 − ∑ i = 1 m β i [ y ( i ) ( ω T ⋅ x ( i ) + b ) − 1 ] L(\beta)=\frac{1}{2}\left \| \overrightarrow{w} \right \| ^{2} -\sum_{i=1}^{m} \beta _{i}[y^{(i)} (\omega ^{T} \cdot x^{(i)} +b)-1] L(β)=21 w 2i=1mβi[y(i)(ωTx(i)+b)1]

      = 1 2 ω T ω − ∑ i = 1 m β i y ( i ) ω T ⋅ x ( i ) − b ∑ i = 1 m β i y ( i ) + ∑ i = 1 m β i =\frac{1}{2}\omega ^{T}\omega -\sum_{i=1}^{m} \beta _{i}y^{(i)}\omega ^{T} \cdot x^{(i)}-b\sum_{i=1}^{m} \beta _{i}y^{(i)}+\sum_{i=1}^{m} \beta _{i} =21ωTωi=1mβiy(i)ωTx(i)bi=1mβiy(i)+i=1mβi

      = 1 2 ω T ∑ i = 1 m β i x ( i ) y ( i ) − ∑ i = 1 m β i y ( i ) ω T x ( i ) + ∑ i = 1 m β i =\frac{1}{2}\omega ^{T}\sum_{i=1}^{m} \beta _{i} x^{(i)}y^{(i)} -\sum_{i=1}^{m} \beta _{i}y^{(i)}\omega ^{T}x^{(i)}+\sum_{i=1}^{m} \beta _{i} =21ωTi=1mβix(i)y(i)i=1mβiy(i)ωTx(i)+i=1mβi

      = − 1 2 ω T ∑ i = 1 m β i x ( i ) y ( i ) + ∑ i = 1 m β i =-\frac{1}{2}\omega ^{T}\sum_{i=1}^{m} \beta _{i} x^{(i)}y^{(i)} +\sum_{i=1}^{m} \beta _{i} =21ωTi=1mβix(i)y(i)+i=1mβi

      = − 1 2 ( ∑ j = 1 m β j x ( j ) y ( j ) ) T ( ∑ i = 1 m β i x ( i ) y ( i ) ) + ∑ i = 1 m β i =-\frac{1}{2}(\sum_{j=1}^{m} \beta _{j} x^{(j)}y^{(j)})^{T}(\sum_{i=1}^{m} \beta _{i} x^{(i)}y^{(i)} )+\sum_{i=1}^{m} \beta _{i} =21(j=1mβjx(j)y(j))T(i=1mβix(i)y(i))+i=1mβi

      = − 1 2 ∑ j = 1 m β j x ( j ) T y ( j ) ∑ i = 1 m β i x ( i ) y ( i ) + ∑ i = 1 m β i =-\frac{1}{2}\sum_{j=1}^{m} \beta _{j} x^{(j)^{T}}y^{(j)}\sum_{i=1}^{m} \beta _{i} x^{(i)}y^{(i)} +\sum_{i=1}^{m} \beta _{i} =21j=1mβjx(j)Ty(j)i=1mβix(i)y(i)+i=1mβi

      = ∑ i = 1 m β i − 1 2 ∑ i = 1 m ∑ j = 1 m β i β j y ( i ) y ( j ) x ( j ) T x ( i ) =\sum_{i=1}^{m} \beta _{i}-\frac{1}{2}\sum_{i=1}^{m}\sum_{j=1}^{m} \beta _{i}\beta _{j} y^{(i)}y^{(j)}x^{(j)^{T}} x^{(i)} =i=1mβi21i=1mj=1mβiβjy(i)y(j)x(j)Tx(i)

即: { L ( β ) = ∑ i = 1 m β i − 1 2 ∑ i = 1 m ∑ j = 1 m β i β j y ( i ) y ( j ) x ( j ) T x ( i ) s . t : ∑ i = 1 m β i y ( i ) = 0 \left\{\begin{matrix}L(\beta)=\sum_{i=1}^{m} \beta _{i}-\frac{1}{2}\sum_{i=1}^{m}\sum_{j=1}^{m} \beta _{i}\beta _{j} y^{(i)}y^{(j)}x^{(j)^{T}} x^{(i)} \\s.t:\sum_{i=1}^{m} \beta _{i} y^{(i)}=0 \end{matrix}\right. {L(β)=i=1mβi21i=1mj=1mβiβjy(i)y(j)x(j)Tx(i)s.t:i=1mβiy(i)=0

解到这一步,我们发现L函数只与 β \beta β有关,所以此时可以直接极大化我们的优化函数,且
max ⁡ β ≥ 0 l ( β ) ⟶ min ⁡ β ≥ 0 − l ( β ) \max_{\beta \ge 0}l(\beta ) \longrightarrow \min_{\beta \ge 0}-l(\beta ) β0maxl(β)β0minl(β)
因此,求解 β \beta β就变成了
{ min ⁡ β ≥ 0 1 2 ∑ i = 1 m ∑ j = 1 m β i β j y ( i ) y ( j ) x ( j ) T x ( i ) − ∑ i = 1 m β i s . t : ∑ i = 1 m β i y ( i ) = 0 \left\{\begin{matrix}\min_{\beta \ge 0}\frac{1}{2}\sum_{i=1}^{m}\sum_{j=1}^{m} \beta _{i}\beta _{j} y^{(i)}y^{(j)}x^{(j)^{T}} x^{(i)}-\sum_{i=1}^{m} \beta _{i} \\s.t:\sum_{i=1}^{m} \beta _{i} y^{(i)}=0 \end{matrix}\right. {minβ021i=1mj=1mβiβjy(i)y(j)x(j)Tx(i)i=1mβis.t:i=1mβiy(i)=0

但是对于 β \beta β,可以使用SMO算法求得;对于SMO算法,我们先放一放

这里,假设我们用SMO求得了 β \beta β的最优解,那么我们可以分别计算得到对应的:

w = ∑ i = 1 m β i x ( i ) y ( i ) w=\sum_{i=1}^{m} \beta _{i} x^{(i)}y^{(i)} w=i=1mβix(i)y(i)
b:一般使用所有支持向量的计算均值作为实际值

怎么得到支持向量呢?
β = 0 \beta=0 β=0,该样本不是支持向量
β > 1 \beta>1 β>1,该样本是支持向量

小节

对于线性可分的m个样本(x1,y1),(x2,y2)… :

	x为n维的特征向量
	y为二元输出,即+1,-1

SVM的输出为w,b,分类决策函数

通过构造约束问题:
{ min ⁡ β ≥ 0 1 2 ∑ i = 1 m ∑ j = 1 m β i β j y ( i ) y ( j ) x ( j ) T x ( i ) − ∑ i = 1 m β i s . t : ∑ i = 1 m β i y ( i ) = 0 \left\{\begin{matrix}\min_{\beta \ge 0}\frac{1}{2}\sum_{i=1}^{m}\sum_{j=1}^{m} \beta _{i}\beta _{j} y^{(i)}y^{(j)}x^{(j)^{T}} x^{(i)}-\sum_{i=1}^{m} \beta _{i} \\s.t:\sum_{i=1}^{m} \beta _{i} y^{(i)}=0 \end{matrix}\right. {minβ021i=1mj=1mβiβjy(i)y(j)x(j)Tx(i)i=1mβis.t:i=1mβiy(i)=0
使用SMO算法求出上述最优解 β \beta β
找到所有支持向量集合:
S = ( x ( i ) , y ( i ) ) ( β > 0 , i = 1 , 2 , . . . , m ) S = (x^{(i)}, y^{(i)}) (\beta > 0,i=1,2,...,m) S=(x(i),y(i))(β>0,i=1,2,...,m)
从而更新w,b

w = ∑ i = 1 m β i x ( i ) y ( i ) w=\sum_{i=1}^{m} \beta _{i} x^{(i)}y^{(i)} w=i=1mβix(i)y(i)

b = 1 S ∑ i = 1 S ( y s − ∑ i = 1 m β i x ( i ) T y ( i ) x s ) b=\frac{1}{S} \sum_{i=1}^{S}(y^{s}- \sum_{i=1}^{m} \beta _{i} x^{(i)^{T}}y^{(i)}x^{s} ) b=S1i=1S(ysi=1mβix(i)Ty(i)xs)

构造最终的分类器,为:
f ( x ) = s i g n ( w ∗ x + b ) f(x)=sign(w\ast x+b) f(x)=sign(wx+b)

	x<0时,y=-1
	x=0时,y=0
	x>0时,y=1
	
	注意:
		假设,不会出现0
		若出现,正负样本随意输出一个,即+0.00000001或-0.00000001都可以

概念

最后,我们定义具体概念:

分割超平面(Separating Hyperplane):将数据集分割开来的直线、平面叫分割超平面

支持向量(Support Vector):离分割超平面最近的那些点叫做支持向量

间隔(Margin):支持向量数据点到分割超平面的距离称为间隔;任何一个支持向量到分割超平面的距离都是相等的


感谢阅读🌼
如果喜欢这篇文章,记得点赞👍和转发🔄哦!
有任何想法或问题,欢迎留言交流💬,我们下次见!
本文相关代码存放位置
    

祝愉快🌟!


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1489021.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

前端学习之HTML(第一天)

什么是HTML HTML是一种用来描述网页的一种语言&#xff0c;HTML不是一种编程语言&#xff0c;而是一种标记语言。 HTML标签 HTML 标签是由尖括号包围的关键词&#xff0c;比如 <html> HTML 标签通常是成对出现的&#xff0c;比如 <b> 和 </b> 标签对中的…

GraphPad Prism 10: 你的数据,我们的魔法 mac/win版

GraphPad Prism 10是GraphPad Software公司推出的一款功能强大的数据分析和可视化软件。它集数据整理、统计分析、图表制作和报告生成于一体&#xff0c;为科研工作者、学者和数据分析师提供了一个高效、便捷的工作平台。 GraphPad Prism 10软件获取 Prism 10拥有丰富的图表类…

【算法分析与设计】组合

&#x1f4dd;个人主页&#xff1a;五敷有你 &#x1f525;系列专栏&#xff1a;算法分析与设计 ⛺️稳中求进&#xff0c;晒太阳 题目 给定两个整数 n 和 k&#xff0c;返回范围 [1, n] 中所有可能的 k 个数的组合。 你可以按 任何顺序 返回答案。 示例 示例 1&…

2023四色方法_RDHEI_Using_Four-Color_Approach

RRBE 仅供自己做学习笔记使用&#xff0c;切勿转载&#xff0c;如有侵权联系立删&#xff01; 一、创新 1、首次将四色定理应用在图像处理领域&#xff1b; 2、扩展了四色定理&#xff0c;以方便RDHEI。 二、四色定理 四色问题的内容&#xff1a;“任何一张地图只用四种颜…

Vue+SpringBoot打造高校学生管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 学生管理模块2.2 学院课程模块2.3 学生选课模块2.4 成绩管理模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 学生表3.2.2 学院课程表3.2.3 学生选课表3.2.4 学生成绩表 四、系统展示五、核心代码5.1 查询课程5.2 新…

Flutter输入框换行后自适应高度

Flutter输入框换行后输入框高度随之增加 效果 设计思想 通过TextEditingController在build中监听输入框&#xff0c;输入内容后计算输入框高度然后自定义适合的值&#xff0c;并且改变外部容器高度达到自适应高度的目的 参考代码 //以下代码中的值只适用于案例&#xff0c;…

深入理解快速排序算法:从原理到实现

目录 1. 引言 2. 快速排序算法原理 3. 快速排序的时间复杂度分析 4. 快速排序的应用场景 5. 快速排序的优缺点分析 5.1 优点&#xff1a; 5.2 缺点&#xff1a; 6. Java、JavaScript 和 Python 实现快速排序算法 6.1 Java 实现&#xff1a; 6.2 JavaScript 实现&#…

基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的植物病害检测系统(Python+PySide6界面+训练代码)

摘要&#xff1a;开发高效的植物病害检测系统对于提升农业生产效率和作物健康管理意义重大。本篇博客详细阐述了如何运用深度学习技术构建一个植物病害检测系统&#xff0c;并提供了完整的实现代码。该系统基于先进的YOLOv8算法&#xff0c;对YOLOv7、YOLOv6、YOLOv5进行了性能…

Fisher矩阵与自然梯度法

文章目录 Fisher矩阵及自然梯度法Fisher矩阵自然梯度法总结参考链接 Fisher矩阵及自然梯度法 自然梯度法相比传统的梯度下降法具有以下优势&#xff1a; 更好的适应性&#xff1a;自然梯度法通过引入黎曼流形上的梯度概念&#xff0c;能够更好地适应参数空间的几何结构。这使…

Kubernetes(K8S第三部分之资源控制器)

资源控制器 什么是控制器 Kubernetes中内建了很多controller&#xff08;控制器&#xff09;&#xff0c;这些相当于一个状态机&#xff0c;用来控制Pod的具体状态和行为。 控制器类型 ReplicationController和ReplicaSet Deployment DaemonSet StateFulSet Job/CronJob…

javascript学习快速入门

JavaScript 基本语法 快速入门 数据类型 123 // 整数123 123.1 //浮点数123.1 1.123e3 //科学计数法-99//复数 NaN// not a numberInfinity //表示无限大注意点 NaNNaN&#xff0c;这个与所有的数值都不相等&#xff0c;包括自 己 只能通过isNaN(NaN)来判断这个数是否是Na…

Behavioral Verilog

行为Verilog Vivado synthesis支持行为Verilog硬件描述语言&#xff08;VHDL&#xff09;&#xff0c;除了如另外指出的。 行为Verilog中的变量 •行为Verilog中的变量声明为整数。 •这些声明仅用于测试代码。Verilog提供诸如reg和用于实际硬件描述的导线。 •reg和wire之…

华为od机试C卷-最长表达式求值

1 题目描述 提取字符串中的最长合法简单数学表达式子串&#xff0c;字符串长度最长的&#xff0c;并计算表达式的值&#xff0c;如果没有返回0。简单数学表达式只能包含以下内容0-9 数字&#xff0c;符号* 说明: 1.所有数字&#xff0c;计算结果都不超过 long 2.如果有多个长…

mysql学习笔记5——对表的修改操作

对表的列进行操作 对表可以进行创建create与删除drop&#xff0c;同时可以对表进行修改alter 修改字段 添加字段 删除具体的某一列 添加列时可以指定添加位置 对表的数据进行操作 select查询操作可以指定查询条件 删除具体数据&#xff08;而非删除表中某一列某一行&#xf…

简单聊聊http协议头参数之Content-Type和http状态码 415错误

大家好&#xff0c;我是G探险者。 今天聊一下http的状态码&#xff0c;415错误&#xff0c;因为项目里面使用了httpclient进行了远程服务调用&#xff0c;调用发送时&#xff0c;会有一个http header的参数设置。由于参数设置的问题经常会出现错误&#xff0c;导致调用失败&am…

Linux的进程的概念

目录 1.冯诺依曼体系结构&#xff08;硬件&#xff09; 2.操作系统(软件) 2.1概念 2.2设计os(操作系统)的目的 2.3如何理解管理 2.4系统调用和库函数概念 3.进程 3.1基本概念 3.2描述进程-PCB和组织进程 3.3ps axj指令 3.4查看进程 3.5通过系统调用获取进程表示符(P…

一篇了解电阻的使用

目录 一、电阻理论基础 1.电阻的定义 2.欧姆定律 3.电阻决定式 4.电阻的串并联​编辑 5.电阻的功率 6.温度对电阻的影响 二、电阻的选型 1.安装方式 2.电阻值 &#xff08;1&#xff09;电阻值的标称 &#xff08;2&#xff09;电阻值的确定 &#xff08;3&#x…

管家婆订货易在线商城 VshopProcess 任意文件上传漏洞复现

0x01 产品简介 管家婆订货易,帮助传统企业构建专属的订货平台,PC+微信+APP+小程序+h5商城5网合一,无缝对接线下的管家婆ERP系统,让用户订货更高效。支持业务员代客下单,支持多级推客分销,以客带客,拓展渠道。让企业的生意更轻松。 0x02 漏洞概述 管家婆订货易在线商城…

Fastwhisper + Pyannote 实现 ASR + 说话者识别

文章目录 前言一、faster-whisper简单介绍二、pyannote.audio介绍三、faster-whisper pyannote.audio 实现语者识别四、多说几句 前言 最近在研究ASR相关的业务&#xff0c;也是调研了不少模型&#xff0c;踩了不少坑&#xff0c;ASR这块&#xff0c;目前中文普通话效果最好的…

Java多态性的作用及解析

多态性是 Java 面向对象编程的一个重要特性,它的主要作用包括以下几个方面: 提高代码的可扩展性:多态性使得我们可以在不修改现有代码的情况下,通过继承和重写方法来添加新的行为。这意味着我们可以在不影响现有功能的前提下,对代码进行扩展和修改。 增强代码的可读性:使…