【算法分析与设计】组合

news2025/1/4 19:06:25

       📝个人主页:五敷有你      

 🔥系列专栏:算法分析与设计

⛺️稳中求进,晒太阳

题目

给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。

你可以按 任何顺序 返回答案。

示例

示例 1:

输入:n = 4, k = 2
输出:
[
  [2,4],
  [3,4],
  [2,3],
  [1,2],
  [1,3],
  [1,4],
]

示例 2:

输入:n = 1, k = 1
输出:[[1]]

思路(回溯+剪枝)

        如果解决一个问题有多个步骤,每一个步骤有多种方法,题目又要我们找出所有的方法,可以使用回溯算法;
        回溯算法是在一棵树上的 深度优先遍历(因为要找所有的解,所以需要遍历);
        组合问题,相对于排列问题而言,不计较一个组合内元素的顺序性(即 [1, 2, 3] 与 [1, 3, 2] 认为是同一个组合),因此很多时候需要按某种顺序展开搜索,这样才能做到不重不漏。
        回溯算法首先需要画出递归树,不同的树决定了不同的代码实现。下面给出了两种画树的思路。

根据搜索起点画出二叉树

        既然是树形问题上的 深度优先遍历,因此首先画出树形结构。例如输入:n = 4, k = 2,我们可以发现如下递归结构:

        如果组合里有 1 ,那么需要在 [2, 3, 4] 里再找 1 个数;
        如果组合里有 2 ,那么需要在 [3, 4] 里再找 1数。注意:这里不能再考虑 1,因为包含 1 的组合,在第 1 种情况中已经包含。
        依次类推(后面部分省略),以上描述体现的 递归 结构是:在以 n 结尾的候选数组里,选出若干个元素。画出递归结构如下图:

说明:

        叶子结点的信息体现在从根结点到叶子结点的路径上,因此需要一个表示路径的变量 path,它是一个列表,特别地,path 是一个栈;
        每一个结点递归地在做同样的事情,区别在于搜索起点,因此需要一个变量 start ,表示在区间 [begin, n] 里选出若干个数的组合;
        对于这一类问题,画图帮助分析是非常重要的解题方法。

代码实现

class Solution {
  public List<List<Integer>> combine(int n, int k) {
        List<List<Integer>> res = new ArrayList<>();
        if (k <= 0 || n < k) {
            return res;
        }
        // 从 1 开始是题目的设定
        Deque<Integer> path = new ArrayDeque<>();
        dfs(n, k, 1, path, res);
        return res;
    }

    public static void dfs(int n,int k,int begin,Deque<Integer> path,List<List<Integer>> res){
        //递归中止条件 path长度为k
        if(path.size()==k){
            res.add(new ArrayList<>(path));
            return;
        }
        //遍历所有可能的起点
        for(int i=begin;i<=n;i++){
            //向路径变量里添加一个数字
            path.addLast(i);
            dfs(n,k,i+1,path,res);
            path.removeLast();
        }




    }
}

运行结果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1489018.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2023四色方法_RDHEI_Using_Four-Color_Approach

RRBE 仅供自己做学习笔记使用&#xff0c;切勿转载&#xff0c;如有侵权联系立删&#xff01; 一、创新 1、首次将四色定理应用在图像处理领域&#xff1b; 2、扩展了四色定理&#xff0c;以方便RDHEI。 二、四色定理 四色问题的内容&#xff1a;“任何一张地图只用四种颜…

Vue+SpringBoot打造高校学生管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 学生管理模块2.2 学院课程模块2.3 学生选课模块2.4 成绩管理模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 学生表3.2.2 学院课程表3.2.3 学生选课表3.2.4 学生成绩表 四、系统展示五、核心代码5.1 查询课程5.2 新…

Flutter输入框换行后自适应高度

Flutter输入框换行后输入框高度随之增加 效果 设计思想 通过TextEditingController在build中监听输入框&#xff0c;输入内容后计算输入框高度然后自定义适合的值&#xff0c;并且改变外部容器高度达到自适应高度的目的 参考代码 //以下代码中的值只适用于案例&#xff0c;…

深入理解快速排序算法:从原理到实现

目录 1. 引言 2. 快速排序算法原理 3. 快速排序的时间复杂度分析 4. 快速排序的应用场景 5. 快速排序的优缺点分析 5.1 优点&#xff1a; 5.2 缺点&#xff1a; 6. Java、JavaScript 和 Python 实现快速排序算法 6.1 Java 实现&#xff1a; 6.2 JavaScript 实现&#…

基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的植物病害检测系统(Python+PySide6界面+训练代码)

摘要&#xff1a;开发高效的植物病害检测系统对于提升农业生产效率和作物健康管理意义重大。本篇博客详细阐述了如何运用深度学习技术构建一个植物病害检测系统&#xff0c;并提供了完整的实现代码。该系统基于先进的YOLOv8算法&#xff0c;对YOLOv7、YOLOv6、YOLOv5进行了性能…

Fisher矩阵与自然梯度法

文章目录 Fisher矩阵及自然梯度法Fisher矩阵自然梯度法总结参考链接 Fisher矩阵及自然梯度法 自然梯度法相比传统的梯度下降法具有以下优势&#xff1a; 更好的适应性&#xff1a;自然梯度法通过引入黎曼流形上的梯度概念&#xff0c;能够更好地适应参数空间的几何结构。这使…

Kubernetes(K8S第三部分之资源控制器)

资源控制器 什么是控制器 Kubernetes中内建了很多controller&#xff08;控制器&#xff09;&#xff0c;这些相当于一个状态机&#xff0c;用来控制Pod的具体状态和行为。 控制器类型 ReplicationController和ReplicaSet Deployment DaemonSet StateFulSet Job/CronJob…

javascript学习快速入门

JavaScript 基本语法 快速入门 数据类型 123 // 整数123 123.1 //浮点数123.1 1.123e3 //科学计数法-99//复数 NaN// not a numberInfinity //表示无限大注意点 NaNNaN&#xff0c;这个与所有的数值都不相等&#xff0c;包括自 己 只能通过isNaN(NaN)来判断这个数是否是Na…

Behavioral Verilog

行为Verilog Vivado synthesis支持行为Verilog硬件描述语言&#xff08;VHDL&#xff09;&#xff0c;除了如另外指出的。 行为Verilog中的变量 •行为Verilog中的变量声明为整数。 •这些声明仅用于测试代码。Verilog提供诸如reg和用于实际硬件描述的导线。 •reg和wire之…

华为od机试C卷-最长表达式求值

1 题目描述 提取字符串中的最长合法简单数学表达式子串&#xff0c;字符串长度最长的&#xff0c;并计算表达式的值&#xff0c;如果没有返回0。简单数学表达式只能包含以下内容0-9 数字&#xff0c;符号* 说明: 1.所有数字&#xff0c;计算结果都不超过 long 2.如果有多个长…

mysql学习笔记5——对表的修改操作

对表的列进行操作 对表可以进行创建create与删除drop&#xff0c;同时可以对表进行修改alter 修改字段 添加字段 删除具体的某一列 添加列时可以指定添加位置 对表的数据进行操作 select查询操作可以指定查询条件 删除具体数据&#xff08;而非删除表中某一列某一行&#xf…

简单聊聊http协议头参数之Content-Type和http状态码 415错误

大家好&#xff0c;我是G探险者。 今天聊一下http的状态码&#xff0c;415错误&#xff0c;因为项目里面使用了httpclient进行了远程服务调用&#xff0c;调用发送时&#xff0c;会有一个http header的参数设置。由于参数设置的问题经常会出现错误&#xff0c;导致调用失败&am…

Linux的进程的概念

目录 1.冯诺依曼体系结构&#xff08;硬件&#xff09; 2.操作系统(软件) 2.1概念 2.2设计os(操作系统)的目的 2.3如何理解管理 2.4系统调用和库函数概念 3.进程 3.1基本概念 3.2描述进程-PCB和组织进程 3.3ps axj指令 3.4查看进程 3.5通过系统调用获取进程表示符(P…

一篇了解电阻的使用

目录 一、电阻理论基础 1.电阻的定义 2.欧姆定律 3.电阻决定式 4.电阻的串并联​编辑 5.电阻的功率 6.温度对电阻的影响 二、电阻的选型 1.安装方式 2.电阻值 &#xff08;1&#xff09;电阻值的标称 &#xff08;2&#xff09;电阻值的确定 &#xff08;3&#x…

管家婆订货易在线商城 VshopProcess 任意文件上传漏洞复现

0x01 产品简介 管家婆订货易,帮助传统企业构建专属的订货平台,PC+微信+APP+小程序+h5商城5网合一,无缝对接线下的管家婆ERP系统,让用户订货更高效。支持业务员代客下单,支持多级推客分销,以客带客,拓展渠道。让企业的生意更轻松。 0x02 漏洞概述 管家婆订货易在线商城…

Fastwhisper + Pyannote 实现 ASR + 说话者识别

文章目录 前言一、faster-whisper简单介绍二、pyannote.audio介绍三、faster-whisper pyannote.audio 实现语者识别四、多说几句 前言 最近在研究ASR相关的业务&#xff0c;也是调研了不少模型&#xff0c;踩了不少坑&#xff0c;ASR这块&#xff0c;目前中文普通话效果最好的…

Java多态性的作用及解析

多态性是 Java 面向对象编程的一个重要特性,它的主要作用包括以下几个方面: 提高代码的可扩展性:多态性使得我们可以在不修改现有代码的情况下,通过继承和重写方法来添加新的行为。这意味着我们可以在不影响现有功能的前提下,对代码进行扩展和修改。 增强代码的可读性:使…

基础真空技术外国文献Fundamentals of Vacuum Technology

基础真空技术外国文献Fundamentals of Vacuum Technology

Maven构建MapReduce程序上传至虚拟机运行找不到jdbc.Driver

问题前置&#xff1a; Maven构建MapReduce程序&#xff0c; pom中已经写入jdbc驱动&#xff0c; 上传至虚拟机运行扔找不到jdbc.Driver, 具体报错&#xff1a;java.lang.RuntimeException: java.lang.ClassNotFoundException: com.mysql.jdbc.Driver 第一步&#xff1a;确认pom…

2024022701-信息安全(二)——密码学

密码学的基本概念 密码学(Cryptology)&#xff1a; 研究信息系统安全保密的科学。 密码编码学(Cryptography)&#xff1a; 研究对信息进行编码,实现对信息的隐蔽。 密码分析学(Cryptanalytics) &#xff1a; 研究加密消息的破译或消息的伪造。 消息被称为明文(Plaintext)。 用…