YOLOv5-Openvino和ONNXRuntime推理【CPU】

news2024/11/17 7:53:09

1 环境:

CPU:i5-12500
Python:3.8.18

2 安装Openvino和ONNXRuntime

2.1 Openvino简介

Openvino是由Intel开发的专门用于优化和部署人工智能推理的半开源的工具包,主要用于对深度推理做优化。

Openvino内部集成了Opencv、TensorFlow模块,除此之外它还具有强大的Plugin开发框架,允许开发者在Openvino之上对推理过程做优化。

Openvino整体框架为:Openvino前端→ Plugin中间层→ Backend后端
Openvino的优点在于它屏蔽了后端接口,提供了统一操作的前端API,开发者可以无需关心后端的实现,例如后端可以是TensorFlow、Keras、ARM-NN,通过Plugin提供给前端接口调用,也就意味着一套代码在Openvino之上可以运行在多个推理引擎之上,Openvino像是类似聚合一样的开发包。

2.2 ONNXRuntime简介

ONNXRuntime是微软推出的一款推理框架,用户可以非常便利的用其运行一个onnx模型。ONNXRuntime支持多种运行后端包括CPU,GPU,TensorRT,DML等。可以说ONNXRuntime是对ONNX模型最原生的支持。

虽然大家用ONNX时更多的是作为一个中间表示,从pytorch转到onnx后直接喂到TensorRT或MNN等各种后端框架,但这并不能否认ONNXRuntime是一款非常优秀的推理框架。而且由于其自身只包含推理功能(最新的ONNXRuntime甚至已经可以训练),通过阅读其源码可以解深度学习框架的一些核心功能原理(op注册,内存管理,运行逻辑等)
总体来看,整个ONNXRuntime的运行可以分为三个阶段,Session构造,模型加载与初始化和运行。和其他所有主流框架相同,ONNXRuntime最常用的语言是python,而实际负责执行框架运行的则是C++。

2.3 安装

pip install openvino -i  https://pypi.tuna.tsinghua.edu.cn/simple
pip install onnxruntime -i  https://pypi.tuna.tsinghua.edu.cn/simple

3 YOLOv5介绍

YOLOv5详解
Github:https://github.com/ultralytics/yolov5

4 基于Openvino和ONNXRuntime推理

下面代码整个处理过程主要包括:预处理—>推理—>后处理—>画图。
假设图像resize为640×640,
前处理输出结果维度:(1, 3, 640, 640);
推理输出结果维度:(1, 8400, 85),其中85表示4个box坐标信息+置信度分数+80个类别概率,8400表示80×80+40×40+20×20,不同于v8与v9采用类别里面最大的概率作为置信度score;
后处理输出结果维度:(5, 6),其中第一个5表示图bus.jpg检出5个目标,第二个维度6表示(x1, y1, x2, y2, conf, cls)。
注:与YOLOv6输出维度一致,可通用!!!

4.1 全部代码

import argparse
import time 
import cv2
import numpy as np
from openvino.runtime import Core  # pip install openvino -i  https://pypi.tuna.tsinghua.edu.cn/simple
import onnxruntime as ort  # 使用onnxruntime推理用上,pip install onnxruntime,默认安装CPU


# COCO默认的80类
CLASSES = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
            'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
              'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
                'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
                  'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich',
                    'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',
                      'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven',
                        'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']


class OpenvinoInference(object):
    def __init__(self, onnx_path):
        self.onnx_path = onnx_path
        ie = Core()
        self.model_onnx = ie.read_model(model=self.onnx_path)
        self.compiled_model_onnx = ie.compile_model(model=self.model_onnx, device_name="CPU")
        self.output_layer_onnx = self.compiled_model_onnx.output(0)

    def predirts(self, datas):
        predict_data = self.compiled_model_onnx([datas])[self.output_layer_onnx]
        return predict_data

class YOLOv5:
    """YOLOv5 object detection model class for handling inference and visualization."""

    def __init__(self, onnx_model, imgsz=(640, 640), infer_tool='openvino'):
        """
        Initialization.

        Args:
            onnx_model (str): Path to the ONNX model.
        """
        self.infer_tool = infer_tool
        if self.infer_tool == 'openvino':
            # 构建openvino推理引擎
            self.openvino = OpenvinoInference(onnx_model)
            self.ndtype = np.single
        else:
            # 构建onnxruntime推理引擎
            self.ort_session = ort.InferenceSession(onnx_model,
                                                providers=['CUDAExecutionProvider', 'CPUExecutionProvider']
                                                if ort.get_device() == 'GPU' else ['CPUExecutionProvider'])

            # Numpy dtype: support both FP32 and FP16 onnx model
            self.ndtype = np.half if self.ort_session.get_inputs()[0].type == 'tensor(float16)' else np.single
       
        self.classes = CLASSES  # 加载模型类别
        self.model_height, self.model_width = imgsz[0], imgsz[1]  # 图像resize大小
        self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))  # 为每个类别生成调色板

    def __call__(self, im0, conf_threshold=0.4, iou_threshold=0.45):
        """
        The whole pipeline: pre-process -> inference -> post-process.

        Args:
            im0 (Numpy.ndarray): original input image.
            conf_threshold (float): confidence threshold for filtering predictions.
            iou_threshold (float): iou threshold for NMS.

        Returns:
            boxes (List): list of bounding boxes.
        """
        # 前处理Pre-process
        t1 = time.time()
        im, ratio, (pad_w, pad_h) = self.preprocess(im0)
        print('预处理时间:{:.3f}s'.format(time.time() - t1))
        
        # 推理 inference
        t2 = time.time()
        if self.infer_tool == 'openvino':
            preds = self.openvino.predirts(im)
        else:
            preds = self.ort_session.run(None, {self.ort_session.get_inputs()[0].name: im})[0]
        print('推理时间:{:.2f}s'.format(time.time() - t2))

        # 后处理Post-process
        t3 = time.time()
        boxes = self.postprocess(preds,
                                im0=im0,
                                ratio=ratio,
                                pad_w=pad_w,
                                pad_h=pad_h,
                                conf_threshold=conf_threshold,
                                iou_threshold=iou_threshold,
                                )
        print('后处理时间:{:.3f}s'.format(time.time() - t3))

        return boxes
        
    # 前处理,包括:resize, pad, HWC to CHW,BGR to RGB,归一化,增加维度CHW -> BCHW
    def preprocess(self, img):
        """
        Pre-processes the input image.

        Args:
            img (Numpy.ndarray): image about to be processed.

        Returns:
            img_process (Numpy.ndarray): image preprocessed for inference.
            ratio (tuple): width, height ratios in letterbox.
            pad_w (float): width padding in letterbox.
            pad_h (float): height padding in letterbox.
        """
        # Resize and pad input image using letterbox() (Borrowed from Ultralytics)
        shape = img.shape[:2]  # original image shape
        new_shape = (self.model_height, self.model_width)
        r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
        ratio = r, r
        new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
        pad_w, pad_h = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2  # wh padding
        if shape[::-1] != new_unpad:  # resize
            img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
        top, bottom = int(round(pad_h - 0.1)), int(round(pad_h + 0.1))
        left, right = int(round(pad_w - 0.1)), int(round(pad_w + 0.1))
        img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))  # 填充

        # Transforms: HWC to CHW -> BGR to RGB -> div(255) -> contiguous -> add axis(optional)
        img = np.ascontiguousarray(np.einsum('HWC->CHW', img)[::-1], dtype=self.ndtype) / 255.0
        img_process = img[None] if len(img.shape) == 3 else img
        return img_process, ratio, (pad_w, pad_h)
    
    # 后处理,包括:阈值过滤与NMS
    def postprocess(self, preds, im0, ratio, pad_w, pad_h, conf_threshold, iou_threshold):
        """
        Post-process the prediction.

        Args:
            preds (Numpy.ndarray): predictions come from ort.session.run().
            im0 (Numpy.ndarray): [h, w, c] original input image.
            ratio (tuple): width, height ratios in letterbox.
            pad_w (float): width padding in letterbox.
            pad_h (float): height padding in letterbox.
            conf_threshold (float): conf threshold.
            iou_threshold (float): iou threshold.

        Returns:
            boxes (List): list of bounding boxes.
        """
        # (Batch_size, Num_anchors, xywh_score_conf_cls), v5和v6_1.0的[..., 4]是置信度分数,v8v9采用类别里面最大的概率作为置信度score
        x = preds  # outputs: predictions (1, 8400, 85)
        
        # Predictions filtering by conf-threshold
        x = x[x[..., 4] > conf_threshold]

        # Create a new matrix which merge these(box, score, cls) into one
        # For more details about `numpy.c_()`: https://numpy.org/doc/1.26/reference/generated/numpy.c_.html
        x = np.c_[x[..., :4], x[..., 4], np.argmax(x[..., 5:], axis=-1)]

        # NMS filtering
        # 经过NMS后的值, np.array([[x, y, w, h, conf, cls], ...]), shape=(-1, 4 + 1 + 1)
        x = x[cv2.dnn.NMSBoxes(x[:, :4], x[:, 4], conf_threshold, iou_threshold)]
       
        # 重新缩放边界框,为画图做准备
        if len(x) > 0:
            # Bounding boxes format change: cxcywh -> xyxy
            x[..., [0, 1]] -= x[..., [2, 3]] / 2
            x[..., [2, 3]] += x[..., [0, 1]]

            # Rescales bounding boxes from model shape(model_height, model_width) to the shape of original image
            x[..., :4] -= [pad_w, pad_h, pad_w, pad_h]
            x[..., :4] /= min(ratio)

            # Bounding boxes boundary clamp
            x[..., [0, 2]] = x[:, [0, 2]].clip(0, im0.shape[1])
            x[..., [1, 3]] = x[:, [1, 3]].clip(0, im0.shape[0])

            return x[..., :6]  # boxes
        else:
            return []

    # 绘框
    def draw_and_visualize(self, im, bboxes, vis=False, save=True):
        """
        Draw and visualize results.

        Args:
            im (np.ndarray): original image, shape [h, w, c].
            bboxes (numpy.ndarray): [n, 6], n is number of bboxes.
            vis (bool): imshow using OpenCV.
            save (bool): save image annotated.

        Returns:
            None
        """
        # Draw rectangles 
        for (*box, conf, cls_) in bboxes:
            # draw bbox rectangle
            cv2.rectangle(im, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])),
                          self.color_palette[int(cls_)], 1, cv2.LINE_AA)
            cv2.putText(im, f'{self.classes[int(cls_)]}: {conf:.3f}', (int(box[0]), int(box[1] - 9)),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.7, self.color_palette[int(cls_)], 2, cv2.LINE_AA)
    
        # Show image
        if vis:
            cv2.imshow('demo', im)
            cv2.waitKey(0)
            cv2.destroyAllWindows()

        # Save image
        if save:
            cv2.imwrite('demo.jpg', im)


if __name__ == '__main__':
    # Create an argument parser to handle command-line arguments
    parser = argparse.ArgumentParser()
    parser.add_argument('--model', type=str, default='yolov5s.onnx', help='Path to ONNX model')
    parser.add_argument('--source', type=str, default=str('bus.jpg'), help='Path to input image')
    parser.add_argument('--imgsz', type=tuple, default=(640, 640), help='Image input size')
    parser.add_argument('--conf', type=float, default=0.25, help='Confidence threshold')
    parser.add_argument('--iou', type=float, default=0.45, help='NMS IoU threshold')
    parser.add_argument('--infer_tool', type=str, default='openvino', choices=("openvino", "onnxruntime"), help='选择推理引擎')
    args = parser.parse_args()

    # Build model
    model = YOLOv5(args.model, args.imgsz, args.infer_tool)

    # Read image by OpenCV
    img = cv2.imread(args.source)

    # Inference
    boxes = model(img, conf_threshold=args.conf, iou_threshold=args.iou)

    # Visualize
    if len(boxes) > 0:
        model.draw_and_visualize(img, boxes, vis=False, save=True)

4.2 结果

在这里插入图片描述

具体时间消耗:

预处理时间:0.005s(包含Pad)
推理时间:0.04~0.05s(Openvino)
推理时间:0.08~0.09s(ONNXRuntime)
后处理时间:0.001s
注:640×640下。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1488830.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

政安晨【TypeScript高级用法】(一):类与对象

为了在今后使用Cocos引擎开发虚拟场景,咱们首先要了解TypeScript语言。 政安晨的个人主页:政安晨 欢迎 👍点赞✍评论⭐收藏 收录专栏: AI虚拟世界大讲堂 希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提…

NestJS核心成员组成-中间件

关于MiddleWare 从本质来说,我们使用NestJS的时候,有百分之九十的原因是我们只想要一个能提供API的服务,即便是一个简单的由数据库https请求的后台,也能满足百分之九十的人了。 对于有Express以及Koa开发的朋友来说,…

java中的map集合

1.jdk8 Map接口实现类的特点: ①Map与Collection并列存在,用于保存具有映射关系的数据:Key-Value; ②Map中的key与value可以是任何引用类型的数据,会封装到HashMap$Node对象中; ③Map中的key不允许重复,…

【计算机网络】IO多路转接之poll

文章目录 一、poll函数接口二、socket就绪条件三、poll的优点四、poll的缺点五、poll使用案例--只读取数据的server服务器1.err.hpp2.log.hpp3.sock.hpp4.pollServer.hpp5.main.cc 一、poll函数接口 #include <poll.h> int poll(struct pollfd *fds, nfds_t nfds, int t…

YOLOv9独家原创改进|使用可改变核卷积AKConv改进RepNCSPELAN4

专栏介绍&#xff1a;YOLOv9改进系列 | 包含深度学习最新创新&#xff0c;主力高效涨点&#xff01;&#xff01;&#xff01; 一、改进点介绍 AKConv是一种具有任意数量的参数和任意采样形状的可变卷积核&#xff0c;对不规则特征有更好的提取效果。 RepNCSPELAN4是YOLOv9中的…

Pytorch学习 day03(Tensorboard)

Tensorboard Tensorboard能够可视化loss的变化过程&#xff0c;便于我们查看模型的训练状态&#xff0c;也能查看模型当前的输入和输出结果 在Pycharm中&#xff0c;可以通过按住ctrl&#xff0c;并左键点击某个库来进入源文件查看该库的使用方法 SummaryWriter是用来向log_di…

【计算机操作系统】操作系统的诞生

目录 相关概念&#xff1a; 一、手工操作阶段 二、脱机输入/输出阶段 &#xff08;1&#xff09;脱机输入技术 &#xff08;2&#xff09;脱机输出技术 三、单道批处理阶段 四、多道批处理阶段 五、分时技术产生 六、实时系统产生 相关概念&#xff1a; ① 作业&#…

数据结构从入门到精通——链表

链表 前言一、链表1.1 链表的概念及结构1.2 链表的分类1.3 链表的实现1.4 链表面试题1.5 双向链表的实现 二、顺序表和链表的区别三、单项链表实现具体代码text.htext.cmain.c单链表的打印空间的开辟链表的头插、尾插链表的头删、尾删链表中元素的查找链表在指定位置之前、之后…

【C++基础】STL容器面试题分享||上篇

&#x1f308;欢迎来到C基础专栏 &#x1f64b;&#x1f3fe;‍♀️作者介绍&#xff1a;前PLA队员 目前是一名普通本科大三的软件工程专业学生 &#x1f30f;IP坐标&#xff1a;湖北武汉 &#x1f349; 目前技术栈&#xff1a;C/C STL 1.请说说 STL 的基本组成部分2.详细的说&…

SwiftUI 在 App 中弹出全局消息横幅(下)

功能需求 在 SwiftUI 开发的 App 界面中,有时我们需要在全局层面向用户展示一些消息: 如上图所示:我们弹出的全局消息横幅位于所有视图之上,这意味这它不会被任何东西所遮挡;而且用户可以点击该横幅关闭它。这是怎么做到的呢? 在本篇博文中,您将学到以下内容 功能需求…

C++/WinRT教程(第三篇)API的使用

目录 前言 Windows API 在WinRT中的投影 C/WinRT的头文件&#xff08;投影标头&#xff09; 通过对象、接口或通过 ABI 访问成员 投影类型的初始化方法 不要错误地使用延迟初始化 不要错误地使用复制构造 使用 winrt::make 进行构造 标准构造方法 在WinRT组件中实现A…

Linux--文件(2)-重定向和文件缓冲

命令行中的重定向符号 介绍和使用 在Linux的命令行中&#xff0c;重定向符号用于将命令的输入或输出重定向到文件或设备。 常见的重定向符号&#xff1a; 1.“>“符号&#xff1a;将命令的标准输出重定向到指定文件中&#xff0c;并覆盖原有的内容。 2.”>>“符号&a…

C/C++工程师面试题(STL篇)

STL 中有哪些常见的容器 STL 中容器分为顺序容器、关联式容器、容器适配器三种类型&#xff0c;三种类型容器特性分别如下&#xff1a; 1. 顺序容器 容器并非排序的&#xff0c;元素的插入位置同元素的值无关&#xff0c;包含 vector、deque、list vector&#xff1a;动态数组…

[Unity3d] 网络开发基础【个人复习笔记/有不足之处欢迎斧正/侵删】

TCP/IP TCP/IP协议是一 系列规则(协议)的统称&#xff0c;他们定义了消息在网络间进行传输的规则 是供已连接互联网的设备进行通信的通信规则 OSI模型只是一个基本概念,而TCP/IP协议是基于这个概念的具体实现 TCP和UDP协议 TCP:传输控制协议&#xff0c;面向连接&#xff0c…

面试经典150题——简化路径

"A goal is a dream with a deadline." - Napoleon Hill 1. 题目描述 2. 题目分析与解析 2.1 思路一 这个题目开始看起来并不太容易知道该怎么写代码&#xff0c;所以不知道什么思路那就先模拟人的行为&#xff0c;比如对于如下测试用例&#xff1a; 首先 /代表根…

YOLOv8姿态估计实战:训练自己的数据集

课程链接&#xff1a;https://edu.csdn.net/course/detail/39355 YOLOv8 基于先前 YOLO 版本的成功&#xff0c;引入了新功能和改进&#xff0c;进一步提升性能和灵活性。YOLOv8 同时支持目标检测和姿态估计任务。 本课程以熊猫姿态估计为例&#xff0c;将手把手地教大家使用C…

使用TensorRT-LLM进行生产环境的部署指南

TensorRT-LLM是一个由Nvidia设计的开源框架&#xff0c;用于在生产环境中提高大型语言模型的性能。该框架是基于 TensorRT 深度学习编译框架来构建、编译并执行计算图&#xff0c;并借鉴了许多 FastTransformer 中高效的 Kernels 实现&#xff0c;并且可以利用 NCCL 完成设备之…

深入理解nginx的https alpn机制

目录 1. 概述2. alpn协议的简要理解2.1 ssl的握手过程2.2 通过抓包看一下alpn的细节3. nginx源码分析3.1 给ssl上下文设置alpn回调3.2 连接初始化3.3 处理alpn协议回调3.4 握手完成,启用http协议4.4 总结阅读姊妹篇:深入理解nginx的https alpn机制 1. 概述 应用层协议协商(…

大地测量学课堂笔记:1、绪论

慕课网址&#xff1a;https://www.icourse163.org/course/WHU-1464124180?fromsearchPage&outVendorzw_mooc_pcssjg_https://www.icourse163.org/course/WHU-1464124180?fromsearchPage&outVendorzw_mooc_pcssjg_ 1. 大地测量学的定义 大地测量学是专门研究精确测量…

【数据结构】复杂度详解

目录 &#xff08;一&#xff09;算法的复杂度 &#xff08;二&#xff09;时间复杂度 &#xff08;1&#xff09;练笔解释&#xff1a; i&#xff0c;示例1 ii&#xff0c;示例2 iii&#xff0c;二分查找 iv&#xff0c;斐波那契 &#xff08;三&#xff09;空间复杂度…