吴恩达机器学习-可选实验室-梯度下降-Gradient Descent for Linear Regression

news2024/11/15 17:50:01

文章目录

    • 目标
    • 工具
    • 问题陈述
    • 计算损失
    • 梯度下降总结
    • 执行梯度下降
    • 梯度下降法
    • 成本与梯度下降的迭代
    • 预测
    • 绘制
    • 祝贺

在这里插入图片描述

目标

在本实验中,你将:使用梯度下降自动化优化w和b的过程

工具

在本实验中,我们将使用:

  • NumPy,一个流行的科学计算库
  • Matplotlib,一个用于绘制数据的流行库在本地目录的
  • lab_utils.py文件中绘制例程
import math, copy
import numpy as np
import matplotlib.pyplot as plt
plt.style.use('./deeplearning.mplstyle')
from lab_utils_uni import plt_house_x, plt_contour_wgrad, plt_divergence, plt_gradients

当前jupyter note工作目录需要包含:
在这里插入图片描述

问题陈述

让我们使用和之前一样的两个数据点——一个1000平方英尺的房子卖了30万美元,一个2000平方英尺的房子卖了50万美元。
在这里插入图片描述

# Load our data set
x_train = np.array([1.0, 2.0])   #features
y_train = np.array([300.0, 500.0])   #target value

计算损失

这是上一个实验室开发的。我们这里还会用到它

#Function to calculate the cost
def compute_cost(x, y, w, b):
   
    m = x.shape[0] 
    cost = 0
    
    for i in range(m):
        f_wb = w * x[i] + b
        cost = cost + (f_wb - y[i])**2
    total_cost = 1 / (2 * m) * cost

    return total_cost

梯度下降总结

线性模型:f(x)=wx+b
损失函数:J(w,b)
在这里插入图片描述
参数更新:
在这里插入图片描述

执行梯度下降

在这里插入图片描述
在这里插入图片描述

def compute_gradient(x, y, w, b): 
    """
    Computes the gradient for linear regression 
    Args:
      x (ndarray (m,)): Data, m examples 
      y (ndarray (m,)): target values
      w,b (scalar)    : model parameters  
    Returns
      dj_dw (scalar): The gradient of the cost w.r.t. the parameters w
      dj_db (scalar): The gradient of the cost w.r.t. the parameter b     
     """
    
    # Number of training examples
    m = x.shape[0]    
    dj_dw = 0
    dj_db = 0
    
    for i in range(m):  
        f_wb = w * x[i] + b 
        dj_dw_i = (f_wb - y[i]) * x[i] 
        dj_db_i = f_wb - y[i] 
        dj_db += dj_db_i
        dj_dw += dj_dw_i 
    dj_dw = dj_dw / m 
    dj_db = dj_db / m 
        
    return dj_dw, dj_db
plt_gradients(x_train,y_train, compute_cost, compute_gradient)
plt.show()

在这里插入图片描述
上面的左边的图固定了b=100。左图显示了成本曲线在三个点上相对于w的斜率。在图的右边,导数是正的,而在左边,导数是负的。由于“碗形”,导数将始终导致梯度下降到梯度为零的底部。
梯度下降将利用损失函数对w和对b求偏导来更新参数。右侧的“颤抖图”提供了一种查看两个参数梯度的方法。箭头大小反映了该点的梯度大小。箭头的方向和斜率反映了的比例在这一点上。注意,梯度点远离最小值。从w或b的当前值中减去缩放后的梯度。这将使参数朝着降低成本的方向移动。

梯度下降法

既然可以计算梯度,那么上面式(3)中描述的梯度下降可以在下面的gradient_descent中实现。在评论中描述了实现的细节。下面,你将利用这个函数在训练数据上找到w和b的最优值。

def gradient_descent(x, y, w_in, b_in, alpha, num_iters, cost_function, gradient_function): 
    """
    Performs gradient descent to fit w,b. Updates w,b by taking 
    num_iters gradient steps with learning rate alpha
    
    Args:
      x (ndarray (m,))  : Data, m examples 
      y (ndarray (m,))  : target values
      w_in,b_in (scalar): initial values of model parameters  
      alpha (float):     Learning rate
      num_iters (int):   number of iterations to run gradient descent
      cost_function:     function to call to produce cost
      gradient_function: function to call to produce gradient
      
    Returns:
      w (scalar): Updated value of parameter after running gradient descent
      b (scalar): Updated value of parameter after running gradient descent
      J_history (List): History of cost values
      p_history (list): History of parameters [w,b] 
      """
    
    w = copy.deepcopy(w_in) # avoid modifying global w_in
    # An array to store cost J and w's at each iteration primarily for graphing later
    J_history = []
    p_history = []
    b = b_in
    w = w_in
    
    for i in range(num_iters):
        # Calculate the gradient and update the parameters using gradient_function
        dj_dw, dj_db = gradient_function(x, y, w , b)     

        # Update Parameters using equation (3) above
        b = b - alpha * dj_db                            
        w = w - alpha * dj_dw                            

        # Save cost J at each iteration
        if i<100000:      # prevent resource exhaustion 
            J_history.append( cost_function(x, y, w , b))
            p_history.append([w,b])
        # Print cost every at intervals 10 times or as many iterations if < 10
        if i% math.ceil(num_iters/10) == 0:
            print(f"Iteration {i:4}: Cost {J_history[-1]:0.2e} ",
                  f"dj_dw: {dj_dw: 0.3e}, dj_db: {dj_db: 0.3e}  ",
                  f"w: {w: 0.3e}, b:{b: 0.5e}")
 
    return w, b, J_history, p_history #return w and J,w history for graphing
# initialize parameters
w_init = 0
b_init = 0
# some gradient descent settings
iterations = 10000
tmp_alpha = 1.0e-2
# run gradient descent
w_final, b_final, J_hist, p_hist = gradient_descent(x_train ,y_train, w_init, b_init, tmp_alpha, 
                                                    iterations, compute_cost, compute_gradient)
print(f"(w,b) found by gradient descent: ({w_final:8.4f},{b_final:8.4f})")

在这里插入图片描述

成本与梯度下降的迭代

代价与迭代的关系图是衡量梯度下降过程的有用方法。在成功的运行中,成本应该总是降低的。最初成本的变化是如此之快,用不同的尺度来绘制最初的坡度和最终的下降是很有用的。在下面的图表中,请注意轴上的成本比例和迭代步骤。

# plot cost versus iteration  
fig, (ax1, ax2) = plt.subplots(1, 2, constrained_layout=True, figsize=(12,4))
ax1.plot(J_hist[:100])
ax2.plot(1000 + np.arange(len(J_hist[1000:])), J_hist[1000:])
ax1.set_title("Cost vs. iteration(start)");  ax2.set_title("Cost vs. iteration (end)")
ax1.set_ylabel('Cost')            ;  ax2.set_ylabel('Cost') 
ax1.set_xlabel('iteration step')  ;  ax2.set_xlabel('iteration step') 
plt.show()

在这里插入图片描述

预测

现在您已经发现了参数w和b的最优值,您可以现在用这个模型根据我们学到的参数来预测房价。作为预期,预测值与训练值几乎相同住房。此外,不在预测中的值与期望值一致。

print(f"1000 sqft house prediction {w_final*1.0 + b_final:0.1f} Thousand dollars")
print(f"1200 sqft house prediction {w_final*1.2 + b_final:0.1f} Thousand dollars")
print(f"2000 sqft house prediction {w_final*2.0 + b_final:0.1f} Thousand dollars")

在这里插入图片描述

绘制

您可以通过在代价(w,b)的等高线图上绘制迭代代价来显示梯度下降的执行过程。

fig, ax = plt.subplots(1,1, figsize=(12, 6))
plt_contour_wgrad(x_train, y_train, p_hist, ax)

在这里插入图片描述

上图等高线图显示了w和b范围内的成本(w, b)用圆环表示。用红色箭头覆盖的是梯度下降的路径。以下是一些需要注意的事项:这条路平稳地(单调地)向目标前进。最初的步骤比接近目标的步骤要大得多。
放大后,我们可以看到梯度下降的最后步骤。注意,当梯度趋于零时,步骤之间的距离会缩小。

fig, ax = plt.subplots(1,1, figsize=(12, 4))
plt_contour_wgrad(x_train, y_train, p_hist, ax, w_range=[180, 220, 0.5], b_range=[80, 120, 0.5],
            contours=[1,5,10,20],resolution=0.5)

在这里插入图片描述

# initialize parameters
w_init = 0
b_init = 0
# set alpha to a large value
iterations = 10
tmp_alpha = 8.0e-1
# run gradient descent
w_final, b_final, J_hist, p_hist = gradient_descent(x_train ,y_train, w_init, b_init, tmp_alpha, 
                                                    iterations, compute_cost, compute_gradient)

在这里插入图片描述
上面,w和b在正负之间来回跳跃,绝对值随着每次迭代而增加。此外,每次迭代J(w,b)都会改变符号,成本也在增加W而不是递减。这是一个明显的迹象,表明学习率太大,解决方案是发散的。我们用一个图来形象化。

plt_divergence(p_hist, J_hist,x_train, y_train)
plt.show()

上面,左图显示了w在梯度下降的前几个步骤中的进展。W从正到负振荡,成本迅速增长。梯度下降同时在两个魔杖b上运行,因此需要右边的3-D图来获得完整的图像。

祝贺

在这个实验中深入研究了单个变量的梯度下降的细节。开发了一个程序来计算梯度想象一下梯度是什么完成一个梯度下降程序利用梯度下降法求参数考察了确定学习率大小的影响

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1486183.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何利用pynlpir进行中文分词并保留段落信息

一、引言 nlpir是由张华平博士开发的中文自然处理工具&#xff0c;可以对中文文本进行分词、聚类分析等&#xff0c;它既有在线的中文数据大数据语义智能分析平台&#xff0c;也有相关的python包pynlpir&#xff0c;其github的地址是&#xff1a; Pynlpir在Github上的地址 这…

【分块三维重建】【slam】LocalRF:逐步优化的局部辐射场鲁棒视图合成(CVPR 2023)

项目地址&#xff1a;https://localrf.github.io/ 题目&#xff1a;Progressively Optimized Local Radiance Fields for Robust View Synthesis 来源&#xff1a;KAIST、National Taiwan University、Meta 、University of Maryland, College Park 提示&#xff1a;文章用了s…

Linux设备模型(十一) - platform设备

一&#xff0c;platform device概述 在Linux2.6以后的设备驱动模型中&#xff0c;需关心总线、设备和驱动这3个实体&#xff0c;总线将设备和驱动绑定。在系统每注册一个设备的时候&#xff0c; 会寻找与之匹配的驱动&#xff1b;相反的&#xff0c;在系统每注册一个设备的时…

输出梯形 C语言

解析&#xff1a;这个输出图形的题就是一个找规律加数学计算&#xff0c;我们发现每行比上一行多两个*&#xff0c;最后一行的*表达式为h&#xff08;h-1&#xff09;*2&#xff0c;即3*h-2&#xff0c;那么每一行就是一个先输出最后一行&#xff0d;当前行*个数个空格&#xf…

【Godot4自学手册】第十九节敌人的血量显示及掉血特效

这一节&#xff0c;我主要学习敌人的血量显示、掉血显示和死亡效果。敌人的血量显示和主人公的血量显示有所不同&#xff0c;主要是在敌人头顶有个红色的血条&#xff0c;受到攻击敌人的血条会减少&#xff0c;并且有掉血数量的文字显示&#xff0c;效果如下&#xff1a; 一、…

详解动态规划(算法村第十九关青铜挑战)

不同路径 62. 不同路径 - 力扣&#xff08;LeetCode&#xff09; 一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角&#xff08;在下图中标记为 “Finis…

QT Mingw32/64编译ffmpeg源码生成32/64bit库以及测试

文章目录 前言下载msys2ysamFFmpeg 搭建编译环境安装msys2安装QT Mingw编译器到msys环境中安装ysam测试 编译FFmpeg测试 前言 FFmpeg不像VLC有支持QT的库文件&#xff0c;它仅提供源码&#xff0c;需要使用者自行编译成对应的库&#xff0c;当使用QTFFmpeg实现播放视频以及视频…

【leetcode】用队列实现栈

大家好&#xff0c;我是苏貝&#xff0c;本篇博客带大家刷题&#xff0c;如果你觉得我写的还不错的话&#xff0c;可以给我一个赞&#x1f44d;吗&#xff0c;感谢❤️ 点击查看题目 思路: 在做此题之前&#xff0c;我们先要实现队列&#xff0c;这在上个博客中已经写过&#…

算法43:动态规划专练(最长回文子串 力扣5题)---范围模型

之前写过一篇最长回文子序列的博客算法27&#xff1a;最长回文子序列长度&#xff08;力扣516题&#xff09;——样本模型 范围模型-CSDN博客 在那一篇博客中&#xff0c;回文是可以删除某些字符串组成的。比如&#xff1a; 字符串为&#xff1a;a1b3c4fdcdba&#xff0c; 那…

赵文彬将出席无磷锅炉工艺助剂在锅炉水节水节能应用

演讲嘉宾&#xff1a;赵文彬 集团副总/技术总监 上远未来水务集团有限公司 演讲题目&#xff1a;无磷锅炉工艺助剂在锅炉水节水节能方面的应用 会议简介 “十四五”规划中提出&#xff0c;提高工业、能源领城智能化与信息化融合&#xff0c;明确“低碳经济”新的战略目标&am…

c++之旅——第四弹

大家好啊&#xff0c;这里是c之旅第三弹&#xff0c;跟随我的步伐来开始这一篇的学习吧&#xff01; 如果有知识性错误&#xff0c;欢迎各位指正&#xff01;&#xff01;一起加油&#xff01;&#xff01; 创作不易&#xff0c;希望大家多多支持哦&#xff01; 本篇文章的主…

一些C语言题目

求10个整数中最大值 #include <stdio.h>//求10个整数中最大值 int main() {int arr[10]{2,5,8,6,19,1,7,3,11,3};int i 0;int max 0;/*for(i 0;i < 10;i){scanf("%d",&arr[i]);}*/for(i 0;i < 10;i){if(arr[i] > max)max arr[i];}printf(&q…

tomcat 反向代理 自建博客 修改状态页 等

一 自建博客 随后&#xff0c;拷贝到webapps下面 并且做软连接 随后重定向 并且下载 cat >/etc/yum.repos.d/mysql.repo <<EOF [mysql57-community] nameMySQL 5.7 Community Server baseurlhttp://repo.mysql.com/yum/mysql-5.7-community/el/7/x86_64/ enabled1 g…

分享一款我自己开发的自动更新小工具

我们公司最近需要开发一款自动上传的工具&#xff0c;这个工具需要安装在用户电脑上&#xff0c;但是这样不利于维护&#xff0c;于是想到了自动更新这个功能&#xff0c;需要在打开工具时顺带打开自动更新的小工具&#xff0c;这样我们在更新代码后&#xff0c;用户那边就能自…

IDEA POM文件配置profile实现不同环境切换

目录 一、背景 二、实现 2.1创建不同的配置文件 2.2配置POM文件 三、效果 3.1本地使用 2.2线上或者测试环境使用 一、背景 在企业级开发中&#xff0c;为了不影响生产环境的项目运行&#xff0c;一般情况下都会划分生产环境、测试环境、开发环境。不同环境可以配置不同的…

4. 编写app组件

1. 代码 main.ts // 引入createApp用于创建应用 import {createApp} from "vue"// 引入App根组件 import App from ./App.vue createApp(App).mount(#app) App.vue <!-- vue文件可以写三种标签1. template标签&#xff0c;写html结构2. script 脚本标签&…

Linux设备模型(十) - bus/device/device_driver/class

四&#xff0c;驱动的注册 1&#xff0c;struct device_driver结构体 /** * struct device_driver - The basic device driver structure * name: Name of the device driver. * bus: The bus which the device of this driver belongs to. * owner: The module own…

js 面试 什么是WebSockets?HTTP和HTTPS有什么不同?web worker是什么?

概念&#xff1a; webSocket 是一种在客户端和服务端之间建立持久连接的协议&#xff0c;它提供全双工通信通道&#xff0c;是服务器可以主动向客户端推送数据&#xff0c;同时也可以接受客户端发送的数据。 1 webSocket与https区别&#xff1f; 在网络通信中&#xff0c;We…

一款汇聚 精美UI+AI内容生成助手 的实用白板工具

大家好&#xff0c;我是Mandy。今天给大家分享的内容是&#xff0c;如何利用AI快速生成思维导图、PPT、绘画等功能&#xff0c;本文分享的AI功能是基于boardmix实现。 boardmix是一款非常精美的在线白板工具&#xff0c;是一个实时协作的智慧白板上、一键生成PPT、用AI协助创作…

YOLOv9保姆教程,手把手教你训练、检测,快来学习吧!!

首先在这里推送一下我的YOLOv9改进专栏&#xff0c;目前是全网最快的YOLOv9改进专栏&#xff0c;该专栏将更新最新的模块来改进YOLOv9&#xff0c;助力大家论文与科研&#xff0c;欢迎大家了解&#xff01; ⭐专栏介绍&#xff1a;YOLOv9改进系列 | 包含深度学习最新创新&…