OpenCV 4基础篇| OpenCV图像的裁切

news2024/11/15 22:54:50

目录

  • 1. Numpy切片
    • 1.1 注意事项
    • 1.2 代码示例
  • 2. cv2.selectROI()
    • 2.1 语法结构
    • 2.2 注意事项
    • 2.3 代码示例
  • 3. Pillow.crop
    • 3.1 语法结构
    • 3.2 注意事项
    • 3.3 代码示例
  • 4. 扩展示例:单张大图裁切成多张小图
  • 5. 总结

1. Numpy切片

语法结构:

retval = img[y:y+h, x:x+w] #对图像 img 裁剪并返回指定的矩阵区域图像。
  • img:图像数据,nparray 多维数组
  • x, y:整数,像素值,裁剪矩形区域左上角的坐标值
  • w, h:整数,像素值,裁剪矩形区域的宽度、高度
  • retval:裁剪后获得的 OpenCV 图像,nparray 多维数组

1.1 注意事项

  • Numpy 多维数组的切片是原始数组的浅拷贝,切片修改后原始数组也会改变。推荐采用 .copy() 进行深拷贝,得到原始图像的副本。
  • Numpy 数组切片,当上界或下界为数组边界时可以省略,如:img[y:, :x] 表示高度方向从 y 至图像底部(像素ymax),宽度方向从图像左侧(像素 0)至 x。

1.2 代码示例

import cv2

imgFile = "./img/lena.jpg"
img1 = cv2.imread(imgFile, flags=1)  # flags=1 读取彩色图像(BGR)
xmin, ymin, w, h = 200, 200, 200, 200  # 矩形裁剪区域 (ymin:ymin+h, xmin:xmin+w) 的位置参数
imgCrop = img1[ymin:ymin + h, xmin:xmin + w].copy()  # 切片获得裁剪后保留的图像区域
cv2.imshow("CropDemo", imgCrop)  # 在窗口显示 彩色随机图像
cv2.waitKey(0)
cv2.destroyAllWindows()

1

2. cv2.selectROI()

2.1 语法结构

cv2.selectROI(windowName, img, showCrosshair=None, fromCenter=None):#可以通过鼠标选择感兴趣的矩形区域(ROI)
  • windowName:选择的区域被显示在的窗口的名字
  • img:要在什么图片上选择ROI
  • showCrosshair:是否在矩形框里画十字线.
  • fromCenter:是否是从矩形框的中心开始画

2.2 注意事项

  • 由于 cv2.selectROI 是一个交互式的函数,它可能不适合用于自动化脚本或没有图形用户界面的环境。在这种情况下,你可能需要寻找其他方法来选择图像中的 ROI,例如使用固定坐标、图像分割算法等。

2.3 代码示例

import cv2

imgFile = "img/lena.jpg"  
img1 = cv2.imread(imgFile, flags=1)  # flags=1 读取彩色图像(BGR)
roi = cv2.selectROI(img1, showCrosshair=True, fromCenter=False)
xmin, ymin, w, h = roi  # 矩形裁剪区域 (ymin:ymin+h, xmin:xmin+w) 的位置参数
imgROI = img1[ymin:ymin + h, xmin:xmin + w].copy()  # 切片获得裁剪后保留的图像区域
cv2.imshow("RIODemo", imgROI)
cv2.waitKey(0)
cv2.destroyAllWindows()

1

3. Pillow.crop

3.1 语法结构

retval = Image.crop(left, up, right, lower) #可以通过鼠标选择感兴趣的矩形区域(ROI)
  • left: 整数,表示裁剪区域左上角的 x 坐标。
  • up:整数,表示裁剪区域左上角的 y 坐标。
  • right:整数,表示裁剪区域右下角的 x 坐标。这个值通常大于 left。
  • below:整数,表示裁剪区域右下角的 y 坐标。这个值通常大于 upper。
  • retval:一个新的 Image 对象,原始图像中被裁剪出来的矩形区域

3.2 注意事项

  • crop()函数接受一个包含四个数字的元组参数,表示裁剪区域的左上角和右下角的坐标。这个元组的格式是(left, upper, right, lower),其中left和upper是裁剪区域的左上角坐标,right和lower是右下角坐标。坐标的原点(0,0)通常在图像的左上角。
  • Pillow库使用坐标系的原点在左上角,x轴向右增加,y轴向下增加。这与一些其他图像处理库(如OpenCV)的坐标系原点在左下角的约定不同,需要注意坐标的顺序和方向。
  • 裁剪区域的坐标必须在图像的边界内。如果裁剪区域的坐标超出了图像的边界,将会引发一个ValueError异常。因此,在调用crop()函数之前,最好先检查裁剪区域的坐标是否有效。
  • crop()函数不会修改原始图像,而是返回一个新的裁剪后的图像对象。原始图像保持不变,如果需要保存裁剪后的图像,需要将其保存到文件或进行其他操作。

3.3 代码示例

from PIL import Image
import matplotlib.pyplot as plt

imgFile = "./img/lena.jpg"
img = Image.open(imgFile)  # W*H
plt.rcParams['font.sans-serif'] = ['FangSong']  # 支持中文标签
plt.subplot(221), plt.title("原图"), plt.axis('off')
plt.imshow(img)  
img_c = img.crop([img.size[0] / 4, img.size[1] / 4, img.size[0] * 3 / 4, img.size[1] * 3 / 4])
plt.rcParams['font.sans-serif'] = ['FangSong']  # 支持中文标签
plt.subplot(222), plt.title("裁切之后"), plt.axis('off')
plt.imshow(img_c)  
plt.show()

11

4. 扩展示例:单张大图裁切成多张小图

from PIL import Image

imgFile = "./img/lena.jpg"
img = Image.open(imgFile)
size = img.size
print(size)
# 准备将图片切割成9张小图片
weight = int(size[0] // 3)
height = int(size[1] // 3)
# 切割后的小图的宽度和高度
print(weight, height)
for j in range(3):
    for i in range(3):
        box = (weight * i, height * j, weight * (i + 1), height * (j + 1))
        region = img.crop(box)
        region.save('{}{}.png'.format(j, i))

1

5. 总结

  • Numpy切片和Pillow.crop()都是非交互式的裁剪方法,适用于在代码中直接指定裁剪区域。
  • cv2.selectROI()是一个交互式的裁剪方法,允许用户通过图形界面选择ROI。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1486078.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【JavaEE进阶】CSS选择器的常见用法

CSS选择器的主要功能就是选中页面指定的标签元素&#xff0c;选中了元素&#xff0c;才可以设置元素的属性。 CSS选择器主要有以下几种: 标签选择器类选择器id选择器复合选择器通配符选择器 接下来用代码来学习这几个选择器的使用。 <!DOCTYPE html> <html lang&q…

【C++】set、multiset与map、multimap的使用

目录 一、关联式容器二、键值对三、树形结构的关联式容器3.1 set3.1.1 模板参数列表3.1.2 构造3.1.3 迭代器3.1.4 容量3.1.5 修改操作 3.2 multiset3.3 map3.3.1 模板参数列表3.3.2 构造3.3.3 迭代器3.3.4 容量3.3.5 修改操作3.3.6 operator[] 3.4 multimap 一、关联式容器 谈…

Angular基础---HelloWorld---Day1

文章目录 1. 创建Angular 项目2.对Angular架构的最基本了解3.创建并引用新的组件&#xff08;component&#xff09;4.对Angular架构新的认识&#xff08;多组件&#xff09;5.组件中业务逻辑文件的编辑&#xff08;ts文件&#xff09;6.标签中属性的绑定(1) ID的绑定(2) class…

django项目 法律法规管理系统

1.项目结构 2.项目需求 1.用户管理模块 2.数据采集模块 3.知识管理模块 4.智能匹配模块 5.个人收藏模块 6.数据分析模块 7.页面展示模块 3.知识点 1.智能匹配模块推荐算法的实现原理 TF (Term Frequency)&#xff1a;词频&#xff0c;表示一个词在文档中出现的频…

Latex常用符号和技巧

Latex常用符号和技巧 随笔记录,不分顺序 一些有用的Latex资源 https://latexstudio.net/ https://www.latexstudio.net/articles/ IEEE相关文件(包括IEEETransaction Latex模板,参考文件模板,相关文件和个人搜集的Latex说明文件等) 链接:https://pan.baidu.com/s/1NJ…

每个大模型开发者都应该知道的数字

GitHub - ray-project/llm-numbers: Numbers every LLM developer should know 谷歌内部流传了一份由传奇工程师 Jeff Dean 整理的文档&#xff0c;名为《每个工程师都应该知道的数字》。大语言模型&#xff08;LLM&#xff09;开发人员们同样需要一组类似的数字为粗略计算做参…

steam++加速问题:出现显示443端口被 vmware-hostd(9860)占用的错误。

目录 前言&#xff1a; 正文&#xff1a; 前言&#xff1a; 使用Steam对GitHub进行加速处理时&#xff0c;建议使用2.8.6版本。 下载地址如下&#xff1a;Release 2.8.6 BeyondDimension/SteamTools GitHub 下载时注意自己的系统位数 正文&#xff1a; 使用GitHub时会使…

Spring重点记录

文章目录 1.Spring的组成2.Spring优点3.IOC理论推导4.IOC本质5.IOC实现&#xff1a;xml或者注解或者自动装配&#xff08;零配置&#xff09;。6.hellospring6.1beans.xml的结构为&#xff1a;6.2.Spring容器6.3对象的创建和控制反转 7.IOC创建对象方式7.1以有参构造的方式创建…

WPF应用程序使用MVVM模式

文章目录 一、前言二、正文&#xff1a;模式 - WPF应用程序使用MVVM设计模式2.0 一些术语2.1 秩序与混乱2.2 MVVM模式的演变2.3 为何WPF开发者喜爱MVVM2.4 Demo应用程序2.5 路由命令逻辑2.6 ViewModel类层次结构2.7 ViewModelBase类2.8 CommandViewModel类2.9 MainWindowViewMo…

spring注解驱动系列--自动装配

Spring利用依赖注入&#xff08;DI&#xff09;&#xff0c;完成对IOC容器中中各个组件的依赖关系赋值&#xff1b;依赖注入是spring ioc的具体体现&#xff0c;主要是通过各种注解进行属性的自动注入。 一、Autowired&#xff1a;自动注入 一、注解介绍 1、默认优先按照类型去…

MySQL进阶:InnoDB引擎(逻辑存储结构、架构、事务原理、MVCC(面试高频))

&#x1f468;‍&#x1f393;作者简介&#xff1a;一位大四、研0学生&#xff0c;正在努力准备大四暑假的实习 &#x1f30c;上期文章&#xff1a;MySQL进阶&#xff1a;全局锁、表级锁、行级锁总结 &#x1f4da;订阅专栏&#xff1a;MySQL进阶 希望文章对你们有所帮助 MVCC很…

jenkins实战(1)

一, Jenkins官网介绍: Jenkins 持续集成、持续部署 下载地址:Jenkins download and deployment 提供两种类型: LTS(长期版)和Weekly(最近一周的版本) 注: 必须是Java8及以上版本(官网针对这一点有做说明) 二, 安装 下载war包,java -jar XXX --httpPort8081 或 下载war包…

为什么说 TiDB 在线扩容对业务几乎没有影响

本文讨论了分布式数据库在在线扩容方面的挑战&#xff0c; 详细解释了一般分布式数据库和 TiDB 在扩容机制上的不同。 一般分布式数据库在进行在线扩容时&#xff0c;需要重新平衡数据分布&#xff0c;可能会影响系统的可用性和 IO 消耗。 相比之下&#xff0c;TiDB 的存算分离…

五、西瓜书——集成学习

1.个体与集成 集成学习通过将多个学习器进行结合,常可获得比单一学习器显著优越的泛化性能&#xff0c;这对“弱学习器”(weak learner)尤为明显因此集成学习的很多理论研究都是针对弱学习器进行的而基学习器有时也被直接称为弱学习器。 要获得好的集成个体学习器应“好而不同”…

mybatis开发一个分页插件、mybatis实现分页、mybatis拦截器

mybatis开发一个分页插件、mybatis实现分页、mybatis拦截器 通过官网的mybatis插件说明可知&#xff0c;我们可以通过拦截器进行开发一个插件。 例如这样的&#xff1a; UserMapper mapper sqlSession.getMapper(UserMapper.class);// 开始分页MagicPage.startPage(1, 3);//…

八. 实战:CUDA-BEVFusion部署分析-分析BEVFusion中各个ONNX

目录 前言0. 简述1. camera.backbone.onnx(fp16)2. camera.backbone.onnx(int8)3. camera.vtransform.onnx(fp16)4. fuser.onnx(fp16)5. fuser.onnx(int8)6. lidar.backbone.xyz.onnx7. head.bbox.onnx(fp16)总结下载链接参考 前言 自动驾驶之心推出的《CUDA与TensorRT部署实战…

【C++】vector的使用和模拟实现(超级详解!!!!)

文章目录 前言1.vector的介绍及使用1.1 vector的介绍1.2 vector的使用1.2.1 vector的定义1.2.2 vector iterator 的使用1.2.3 vector 空间增长问题1.2.3 vector 增删查改1.2.4 vector 迭代器失效问题。&#xff08;重点!!!!!!&#xff09;1.2.5 vector 在OJ中有关的练习题 2.ve…

蓝桥杯倒计时 41天 - KMP 算法

KMP算法 KMP算法是一种字符串匹配算法&#xff0c;用于匹配模式串P在文本串S中出现的所有位置。 例如S“ababac&#xff0c;P“aba”&#xff0c;那么出现的所有位置是13。 在初学KMP时&#xff0c;我们只需要记住和学会使用模板即可&#xff0c;对其原理只需简单理解&#xff…

WiFi模块引领智能家居革命:连接未来的生活

随着科技的快速发展&#xff0c;智能家居正成为现代生活的一部分&#xff0c;极大地改变了我们与家庭环境互动的方式。其中&#xff0c;WiFi模块作为关键的连接技术&#xff0c;在推动智能家居革命中发挥着不可忽视的作用。本文将深入探讨WiFi模块如何驱动智能家居革命。 设备互…

Maven实战(2)之搭建maven私服

一, 背景: 如果使用国外镜像,下载速度比较慢; 如果使用阿里云镜像,速度还算OK,但是假如网速不好的时候,其实也是比较慢的; 如果没有网的情况下更加下载不了. 二, 本地仓库、个人/公司私服、远程仓库关系如下: 三, 下载安装nexus私服 略