利用MDK的FLM文件生成通用flash驱动

news2024/11/19 3:35:34

文章目录

  • 前言
  • 一、FLM文件是什么?
  • 二、FLM文件结构
    • 1.FlashPrg.c
    • 2.FlashPrg.c
  • 三、解析FLM文件
    • 1.解析flm文件
  • 四、设计flash驱动抽象层
  • 五、快速使用


前言

在进行Flash操作时,一般我们需要设计一套Flash抽象层,至少要包括flash的init,read、write、erase这些操作。但每更换一个单片机或者flash器件就要额外去编写flash驱动去适配init,read、write、erase。尽管有会者不难的属性加持,但适配所有的单片机或者flash器件,工作量也可想而知。

本文为大家提供一个适配几乎任意单片机型号的flash驱动,之所以说是几乎,是因为我们这次要借东风,而这个东风就是Keil的FLM文件。

项目开源地址:


一、FLM文件是什么?

熟悉Keil的朋友们都知道,当我们要下载编译好的镜像到Flash时,首先要做的一步就是选择合适的Flash下载算法,而这个算法本身就是一个FLM文件:

所谓Flash下载算法,是负责擦除,下载应用数据到flash的一个软件。而Keil往往会集成不少FLM文件以支持大多数的flash型号。
当然,这些算法也是根据不同型号的flash所编写的。只不过,前人们已经为我们种好了大树,我们可以直接在树下乘凉了。

二、FLM文件结构

Keil规定了FLM文件的构成,它是一成不变的,我们才可以放心的对文件本身进行解析,并为自己所用。

生成FLM文件的程序中,有两个非常重要的文件,分别是

  • FlashPrg.c中包含编程算法。
  • FlashDev.c中包含设备参数。

1.FlashPrg.c

FlashPrg.c文件包含强制性flash编程函数Init、UnInit、EraseSector和ProgramPage。可选地,根据设备特性,可以实现函数EraseChip、BlankCheck和Verify 。

Function NameIndicationDescription
BlankCheckoptionalCheck and compare patterns.
EraseChipoptionalDelete entire Flash memory content.
EraseSectormandatoryDelete Flash memory content of a specific sector.
InitmandatoryInitialize and prepare device for Flash programming.
ProgramPagemandatoryWrite the application into the Flash memory.
UnInitmandatoryDe-initialize the microcontroller after one of the Flash programming steps.
VerifyoptionalCompare Flash memory content with the program code.

其中有4个是必须要有的,我们来逐一说明:

  1. Init
    函数Init为 Flash 编程初始化微控制器。每当尝试将程序下载到 Flash 时都会调用它。
int Init (unsigned long adr, unsigned long clk, unsigned long fnc);

参数adr指定设备的基址。

参数clk指定用于编程设备的时钟频率。

参数fnc是一个数字:

1 代表擦除。
2代表程序。
3代表验证。

Code Example:

int Init (unsigned long adr, unsigned long clk, unsigned long fnc) {
 
  // Zero Wait State
  FLASH->ACR  = 0x00000000;
 
  // Unlock Flash
  FLASH->KEYR = FLASH_KEY1;
  FLASH->KEYR = FLASH_KEY2;
 
  // Test if IWDG is running (IWDG in HW mode)
  if ((FLASH->OBR & 0x04) == 0x00) {
    // Set IWDG time out to ~32.768 second
    IWDG->KR  = 0x5555; // Enable write access to IWDG_PR and IWDG_RLR
    IWDG->PR  = 0x06;   // Set prescaler to 256
    IWDG->RLR = 4095;   // Set reload value to 4095
  }
 
  return (0);
}
  1. ProgramPage
    函数ProgramPage用于将代码写入闪存。它被调用以将程序下载到 Flash。由于flash通常以块或页的形式组织,因此函数ProgramPage的参数不得跨越这些闪存页的对齐边界。页面大小在结构 FlashDevice 中指定,值为Program Page Size。
int ProgramPage ( unsigned  long adr, unsigned  long sz, unsigned  char *buf);

参数adr指定要编程的页面的起始地址。它由主机编程系统与flash页面的起始地址对齐。

参数sz指定数据缓冲区中的数据大小。主机编程系统确保不跨越页面边界。

参数buf指向包含要编程的数据的数据缓冲区。

Code Example:

int ProgramPage (unsigned long adr, unsigned long sz, unsigned char *buf) {
 
  sz = (sz + 1) & ~1;                           // Adjust size for Half Words
 
  while (sz) {
 
    FLASH->CR |=  FLASH_PG;                     // Programming Enabled
 
    M16(adr) = *((unsigned short *)buf);        // Program Half Word
    while (FLASH->SR & FLASH_BSY);
 
    FLASH->CR &= ~FLASH_PG;                     // Programming Disabled
 
    // Check for Errors
    if (FLASH->SR & (FLASH_PGERR | FLASH_WRPRTERR)) {
      FLASH->SR |= FLASH_PGERR | FLASH_WRPRTERR;
      return (1);                               // Failed
    }
 
    // Go to next Half Word
    adr += 2;
    buf += 2;
    sz  -= 2;
  }
 
  return (0);                                   // Done
}
  1. EraseSector
    函数EraseSector删除从参数adr指定的地址开始的扇区内容。
int EraseSector (unsigned long adr);

参数adr扇区地址

Code Example:

int EraseSector (unsigned long adr) {
 
  FLASH->CR |=  FLASH_PER;                      // Page Erase Enabled
  FLASH->AR  =  adr;                            // Page Address
  FLASH->CR |=  FLASH_STRT;                     // Start Erase
 
  while (FLASH->SR & FLASH_BSY) {
    IWDG->KR = 0xAAAA;                          // Reload IWDG
  }
 
  FLASH->CR &= ~FLASH_PER;                      // Page Erase Disabled
 
  return (0);                                   // Done
}
  1. UnInit
    函数UnInit取消初始化微控制器,并在擦除、编程或验证步骤结束时调用。
int UnInit (unsigned long fnc);

Code Example

int UnInit (unsigned long fnc) {
 
  // Lock Flash
  FLASH->CR |=  FLASH_LOCK;
 
  return (0);
}

2.FlashPrg.c

文件FlashDev.c包含以下参数定义:

  1. Flash编程功能。
  2. FlashDevice结构:
struct FlashDevice const FlashDevice  =  {
   FLASH_DRV_VERS,              // 驱动版本,请勿修改!
   "New Device 256kB Flash" ,    // 设备名称
   ONCHIP,                      // 设备类型
   0x00000000,                  // 设备起始地址
   0x00040000,                  // 以字节为单位的设备大小 (256kB)
   1024,                        // 编程页面大小
   0,                           // 保留,必须为0
   0xFF,                        // 已擦除内存的初始内容
   100,                         // 程序页面超时 100 毫秒
   3000,                        // 擦除扇区超时 3000 毫秒
 
// 指定扇区的大小和地址
   0x002000, 0x000000,          // 扇区大小 8kB(8 个扇区)
   0x010000, 0x010000,          // 扇区大小 64kB(2 个扇区)
   0x002000, 0x030000,          // 扇区大小 8kB(8 个扇区)
   SECTOR_END
};

Device Name通常显示在工具中,用于识别 Flash 算法。确保此名称反映设备名称。
编程页面大小指定使用函数ProgramPage进行编程 的块大小。对于块大小较小的设备,最好指定物理块大小的倍数,因为这可以减少与目标的通信开销。快速编程的最佳块大小为 1024 字节,但系统本身并不限制此大小值。

三、解析FLM文件

1.解析flm文件

下面让我们解析一下现有的FLM文件,以STM32F4xx_1024.FLM为例:
将ARM:CMSIS Pack文件夹(通常在D:\Users\Administrator\AppData\Local\Arm\Packs\Keil\STM32F4xx_DFP\2.15.0\CMSIS\Flash)中的内容复制到一个新文件夹中。

打开命令行工具,输入arm-none-eabi-readelf -a STM32F4xx_1024.FLM:

$ arm-none-eabi-readelf -a STM32F4xx_1024.FLM
ELF Header:
  Magic:   7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
  Class:                             ELF32
  Data:                              2's complement, little endian
  Version:                           1 (current)
  OS/ABI:                            UNIX - System V
  ABI Version:                       0
  Type:                              EXEC (Executable file)
  Machine:                           ARM
  Version:                           0x1
  Entry point address:               0x0
  Start of program headers:          12172 (bytes into file)
  Start of section headers:          12236 (bytes into file)
  Flags:                             0x5000000, Version5 EABI
  Size of this header:               52 (bytes)
  Size of program headers:           32 (bytes)
  Number of program headers:         2
  Size of section headers:           40 (bytes)
  Number of section headers:         16
  Section header string table index: 15

Section Headers:
  [Nr] Name              Type            Addr     Off    Size   ES Flg Lk Inf Al
  [ 0]                   NULL            00000000 000000 000000 00      0   0  0
  [ 1] PrgCode           PROGBITS        00000000 000034 000144 00  AX  0   0  4
  [ 2] PrgData           PROGBITS        00000144 000178 000004 00  WA  0   0  4
  [ 3] DevDscr           PROGBITS        00000148 00017c 0010a0 00   A  0   0  4
  [ 4] .debug_abbrev     PROGBITS        00000000 00121c 0005a4 00      0   0  1
  [ 5] .debug_frame      PROGBITS        00000000 0017c0 000104 00      0   0  1
  [ 6] .debug_info       PROGBITS        00000000 0018c4 00064c 00      0   0  1
  [ 7] .debug_line       PROGBITS        00000000 001f10 000218 00      0   0  1
  [ 8] .debug_loc        PROGBITS        00000000 002128 0001b8 00      0   0  1
  [ 9] .debug_macinfo    PROGBITS        00000000 0022e0 000614 00      0   0  1
  [10] .debug_pubnames   PROGBITS        00000000 0028f4 000096 00      0   0  1
  [11] .symtab           SYMTAB          00000000 00298c 000110 10     12   9  4
  [12] .strtab           STRTAB          00000000 002a9c 000100 00      0   0  1
  [13] .note             NOTE            00000000 002b9c 00001c 00      0   0  4
  [14] .comment          PROGBITS        00000000 002bb8 000334 00      0   0  1
  [15] .shstrtab         STRTAB          00000000 002eec 0000a0 00      0   0  1
Key to Flags:
  W (write), A (alloc), X (execute), M (merge), S (strings), I (info),
  L (link order), O (extra OS processing required), G (group), T (TLS),
  C (compressed), x (unknown), o (OS specific), E (exclude),
  y (purecode), p (processor specific)

There are no section groups in this file.

Program Headers:
  Type           Offset   VirtAddr   PhysAddr   FileSiz MemSiz  Flg Align
  LOAD           0x000034 0x00000000 0x00000000 0x00148 0x00148 RWE 0x4
  LOAD           0x00017c 0x00000148 0x00000148 0x010a0 0x010a0 R   0x4

 Section to Segment mapping:
  Segment Sections...
   00     PrgCode PrgData
   01     DevDscr

There is no dynamic section in this file.

There are no relocations in this file.

There are no unwind sections in this file.

Symbol table '.symtab' contains 17 entries:
   Num:    Value  Size Type    Bind   Vis      Ndx Name
     0: 00000000     0 NOTYPE  LOCAL  DEFAULT  UND
     1: 00000000     0 NOTYPE  LOCAL  DEFAULT    1 $t
     2: 00000122     0 NOTYPE  LOCAL  DEFAULT    1 $d
     3: 00000144     0 NOTYPE  LOCAL  DEFAULT    2 $d.realdata
     4: 00000148     0 NOTYPE  LOCAL  DEFAULT    3 $d.realdata
     5: 00000000     0 FILE    LOCAL  DEFAULT  ABS FlashPrg.c
     6: 00000000     0 SECTION LOCAL  DEFAULT    1 .text
     7: 00000000     0 FILE    LOCAL  DEFAULT  ABS FlashDev.c
     8: 00000148  4256 SECTION LOCAL  DEFAULT    3 .constdata
     9: 00000000     0 NOTYPE  GLOBAL HIDDEN   ABS BuildAttributes$$THM_ISAv
    10: 00000001    28 FUNC    GLOBAL HIDDEN     1 GetSecNum
    11: 0000001d    46 FUNC    GLOBAL HIDDEN     1 Init
    12: 0000004b    14 FUNC    GLOBAL HIDDEN     1 UnInit
    13: 00000059    44 FUNC    GLOBAL HIDDEN     1 EraseChip
    14: 00000085    76 FUNC    GLOBAL HIDDEN     1 EraseSector
    15: 000000d1    82 FUNC    GLOBAL HIDDEN     1 ProgramPage
    16: 00000148  4256 OBJECT  GLOBAL HIDDEN     3 FlashDevice

No version information found in this file.

Displaying notes found at file offset 0x00002b9c with length 0x0000001c:
  Owner                 Data size       Description
  ARM                  0x0000000c       Unknown note type: (0x40000000)

通过Symbol table信息我们可以找到Init、UnInit、EraseSector和ProgramPage函数所在的位置。

我们还需要根据Section Headers所描述的位置提取出Prgcode(代码),PrgData(数据),DevDscr(设备描述)的信息。

在命令行中输入arm-none-eabi-objdum -s -d STM32F4xx_1024.FLM:-s参数可以将所有段的内容一十六进制方式打印出来,-d参数可以将所有包含指令的段反汇编。

$ arm-none-eabi-objdump -s -d STM32F4xx_1024.FLM

STM32F4xx_1024.FLM:     file format elf32-littlearm

Contents of section PrgCode:
 0000 0003000e 202802d3 4009001d 70471028  .... (..@...pG.(
 0010 02d30009 c01c7047 80087047 42484149  ......pG..pGBHAI
 0020 41604249 41600021 0160c168 f0221143  A`BIA`.!.`.h.".C
 0030 c1604069 800606d4 3e483d49 01600621  .`@i....>H=I.`.!
 0040 41603d49 81600020 70473748 01694205  A`=I.`. pG7H.iB.
 0050 11430161 00207047 10b53348 01690424  .C.a. pG..3H.i.$
 0060 21430161 0169a203 11430161 3349314a  !C.a.i...C.a3I1J
 0070 00e01160 c368db03 fbd40169 a1430161  ...`.h.....i.C.a
 0080 002010bd 30b5fff7 bbff2749 ca68f023  . ..0.....'I.h.#
 0090 1a43ca60 02240c61 0a690007 400e0243  .C.`.$.a.i..@..C
 00a0 0a610869 e2031043 08612448 214a00e0  .a.i...C.a$H!J..
 00b0 1060cd68 ed03fbd4 0869a043 0861c868  .`.h.....i.C.a.h
 00c0 0006000f 03d0c868 1843c860 012030bd  .......h.C.`. 0.
 00d0 70b5154d c91c8908 eb688900 f0263343  p..M.....h...&3C
 00e0 eb600023 2b61164b 17e02c69 1c432c61  .`.#+a.K..,i.C,a
 00f0 14680460 ec68e403 fcd42c69 64086400  .h.`.h....,id.d.
 0100 2c61ec68 2406240f 04d0e868 3043e860  ,a.h$.$....h0C.`
 0110 012070bd 001d121d 091f0029 e5d10020  . p........)...
 0120 70bd0000 23016745 003c0240 ab89efcd  p...#.gE.<.@....
 0130 55550000 00300040 ff0f0000 aaaa0000  UU...0.@........
 0140 01020000                             ....
Contents of section PrgData:
 0144 00000000                             ....
Contents of section DevDscr:
 0148 01015354 4d333246 34787820 466c6173  ..STM32F4xx Flas
 0158 68000000 00000000 00000000 00000000  h...............
 0168 00000000 00000000 00000000 00000000  ................
 0178 00000000 00000000 00000000 00000000  ................
 0188 00000000 00000000 00000000 00000000  ................
 0198 00000000 00000000 00000000 00000000  ................
 01a8 00000000 00000000 00000000 00000000  ................
 01b8 00000000 00000000 00000000 00000000  ................
 01c8 00000100 00000008 00001000 00040000  ................
 01d8 00000000 ff000000 64000000 70170000  ........d...p...
 01e8 00400000 00000000 00000100 00000100  .@..............
 01f8 00000200 00000200 ffffffff ffffffff  ................

我们所需要的正是以上信息,接下来的任务只需要写一个上位机,将以上文件提取出来即可,这个上位机我已经写好,工具:

允许以后生成STM32F4xx_1024.FLM.c文件,直接添加到我们的工程中即可,生成的代码如下:

#include "flash_blob.h" 

#define OPS_OFFSET ((uint32_t)&flash_code)

#define DEV_OFFSET ((uint32_t)&flash_dev)

#define RAM_OFFSET ((uint32_t)&rw_data)

static const uint32_t flash_code[] = 
{
    0X0E000300,0XD3022820,0X1D000940,0X28104770,0X0900D302,0X47701CC0,0X47700880,0X49414842,
    0X49426041,0X21036041,0X68C16001,0X431122F0,0X694060C1,0XD4060680,0X493D483E,0X21066001,
    0X493D6041,0X20006081,0X48374770,0X05426901,0X61014311,0X47702000,0X4833B510,0X24046901,
    0X61014321,0X03A26901,0X61014311,0X4A314933,0X6011E000,0X03DB68C3,0X6901D4FB,0X610143A1,
    0XBD102000,0XF7FFB530,0X4927FFBB,0X23F068CA,0X60CA431A,0X610C2402,0X0700690A,0X43020E40,
    0X6908610A,0X431003E2,0X48246108,0XE0004A21,0X68CD6010,0XD4FB03ED,0X43A06908,0X68C86108,
    0X0F000600,0X68C8D003,0X60C84318,0XBD302001,0X4D15B570,0X08891CC9,0X008968EB,0X433326F0,
    0X230060EB,0X4B16612B,0X692CE017,0X612C431C,0X60046814,0X03E468EC,0X692CD4FC,0X00640864,
    0X68EC612C,0X0F240624,0X68E8D004,0X60E84330,0XBD702001,0X1D121D00,0X29001F09,0X2000D1E5,
    0X0000BD70,0X45670123,0X40023C00,0XCDEF89AB,0X00005555,0X40003000,0X00000FFF,0X0000AAAA,
    0X00000201,0X00000000,
};

static const uint32_t flash_dev[] = 
{
    0X54530101,0X4632334D,0X20787834,0X73616C46,0X00000068,0X00000000,0X00000000,0X00000000,
    0X00000000,0X00000000,0X00000000,0X00000000,0X00000000,0X00000000,0X00000000,0X00000000,
    0X00000000,0X00000000,0X00000000,0X00000000,0X00000000,0X00000000,0X00000000,0X00000000,
    0X00000000,0X00000000,0X00000000,0X00000000,0X00000000,0X00000000,0X00000000,0X00000000,
    0X00010000,0X08000000,0X00100000,0X00000400,0X00000000,0X000000FF,0X00000064,0X00001770,
    0X00004000,0X00000000,0X00010000,0X00010000,0X00020000,0X00020000,0XFFFFFFFF,0XFFFFFFFF,
};

static uint32_t rw_data[] = 
{
    0X00000000,
};

static flash_blob_device_t  flash_device =
{
    (void*)(OPS_OFFSET + 0X001D),  // Init
    (void*)(OPS_OFFSET + 0X004B),  // UnInit
    (void*)(OPS_OFFSET + 0X0059),  // EraseChip
    (void*)(OPS_OFFSET + 0X0085),  // EraseSector
    (void*)(OPS_OFFSET + 0X00D1),  // ProgramPage
    (void*)(DEV_OFFSET),
    (void*)(RAM_OFFSET),
};
static int flash_blob_device_register(void) 
{                                            
    flash_dev_register(&flash_device);       
    return 0 ;                                
}                                               
INIT_BOARD_EXPORT(flash_blob_device_register);

四、设计flash驱动抽象层

接下来,为了方便后续使用,需要设计一个flash驱动抽象层,代码如下:
flash_blob.h

#ifndef FLASH_BLOB_H
#define FLASH_BLOB_H
#include "rtthread.h"
#include <stdint.h>
#include <stddef.h>
#include <stdbool.h>

#define VERS       1           // Interface Version 1.01

#define UNKNOWN    0           // Unknown
#define ONCHIP     1           // On-chip Flash Memory
#define EXT8BIT    2           // External Flash Device on 8-bit  Bus
#define EXT16BIT   3           // External Flash Device on 16-bit Bus
#define EXT32BIT   4           // External Flash Device on 32-bit Bus
#define EXTSPI     5           // External Flash Device on SPI

#define SECTOR_NUM 16         // Max Number of Sector Items

struct FlashSectors  {
  unsigned long   szSector;    // Sector Size in Bytes
  unsigned long AddrSector;    // Address of Sector
};

typedef struct FlashDevice  {
   unsigned short     Vers;    // Version Number and Architecture
   char       DevName[128];    // Device Name and Description
   unsigned short  DevType;    // Device Type: ONCHIP, EXT8BIT, EXT16BIT, ...
   unsigned long    DevAdr;    // Default Device Start Address
   unsigned long     szDev;    // Total Size of Device
   unsigned long    szPage;    // Programming Page Size
   unsigned long       Res;    // Reserved for future Extension
   unsigned char  valEmpty;    // Content of Erased Memory

   unsigned long    toProg;    // Time Out of Program Page Function
   unsigned long   toErase;    // Time Out of Erase Sector Function

   struct FlashSectors sectors[SECTOR_NUM];
}flash_dev_t;

typedef struct {
	int (*Init)(uint32_t adr, uint32_t clk, uint32_t fnc);
	int (*UnInit)(uint32_t fnc);
    int (*EraseChip)(void);
	int (*EraseSector)(uint32_t adr);
	int (*ProgramPage)(uint32_t adr, uint32_t sz, uint8_t* buf);  
}flash_ops_t;

typedef struct
{
    flash_ops_t tFlashops;
    flash_dev_t *ptFlashDev;
    int *pPrgData;
    rt_slist_t slist;      
}flash_blob_t;

extern void flash_dev_register(flash_blob_t *ptFlashDevice);
extern bool target_flash_init(uint32_t flash_start, int32_t size);
extern bool target_flash_uninit(uint32_t flash_start);
extern int32_t target_flash_write(uint32_t addr, const uint8_t *buf, int32_t size);
extern int32_t target_flash_erase(uint32_t addr, int32_t size);
extern int32_t target_flash_read(uint32_t addr, const uint8_t *buf, int32_t size);
#endif

flash_blob.c

#include "flash_blob.h"
#include "stdio.h"
#include "stdlib.h"
#include "string.h"

static bool s_bIsInit = false;
static rt_slist_t _slist_head = RT_SLIST_OBJECT_INIT(_slist_head);
register int *pPrgDataBase __asm("r9");

void flash_dev_register(flash_blob_t *ptFlashDevice)
{
    rt_slist_init(&(ptFlashDevice->slist));
    rt_slist_append(&_slist_head, &(ptFlashDevice->slist));
}

static flash_blob_t * flash_dev_find(uint32_t flash_start)
{
    rt_slist_t *node;
    rt_slist_for_each(node, &_slist_head) {
        flash_blob_t *ptFlashDevice = rt_slist_entry(node, flash_blob_t, slist);

        if(flash_start >= ptFlashDevice->ptFlashDev->DevAdr &&
           flash_start < ptFlashDevice->ptFlashDev->DevAdr + ptFlashDevice->ptFlashDev->szDev) {
            return ptFlashDevice;
        }
    }
    return NULL;
}

bool target_flash_init(uint32_t flash_start, int32_t size)
{
    if (flash_start % 4 != 0) {
        LOG_E("flash addr must be 4-byte alignment");
        return NULL;
    }

    flash_blob_t *ptFlashDevice = flash_dev_find(flash_start);

    if(ptFlashDevice != NULL) {
        pPrgDataBase = ptFlashDevice->pPrgData;
        ptFlashDevice->tFlashops.Init(flash_start, 0, 0);
        return true;
    }

    return false;
}

bool target_flash_uninit(uint32_t flash_start)
{
    flash_blob_t *ptFlashDevice = flash_dev_find(flash_start);

    if(ptFlashDevice != NULL) {
        pPrgDataBase = ptFlashDevice->pPrgData;
        ptFlashDevice->tFlashops.UnInit(flash_start);
        return true;
    }

    return true;
}

int target_flash_write(uint32_t addr, const uint8_t *buf, int32_t size)
{
    flash_blob_t *ptFlashDevice = flash_dev_find(addr);

    if(ptFlashDevice != NULL) {
        pPrgDataBase = ptFlashDevice->pPrgData;

        while(size > 0) {
            uint32_t write_size = size > ptFlashDevice->ptFlashDev->szPage ? ptFlashDevice->ptFlashDev->szPage : size;

            if( 0 != ptFlashDevice->tFlashops.ProgramPage(addr, write_size, (uint8_t *)buf)) {
                LOG_E("Programming Failed");
                return -1;
            }

            addr += write_size;
            buf  += write_size;
            size -= write_size;
        }

        return size;
    }

    return -1;
}

int32_t target_flash_read(uint32_t addr, const uint8_t *buf, int32_t size)
{
    flash_blob_t *ptFlashDevice;
    pPrgDataBase = ptFlashDevice->pPrgData;
    return size;
}

int32_t target_flash_erase(uint32_t addr, int32_t size)
{
    int32_t wSector, wRemainLen;
    flash_blob_t *ptFlashDevice = flash_dev_find(addr);

    if(ptFlashDevice != NULL) {
        if (size > ptFlashDevice->ptFlashDev->szDev) {
            LOG_E("erase outrange flash size! addr is (0x%p)\n", (void *)(addr + size));
            return -1;
        }

        pPrgDataBase = ptFlashDevice->pPrgData;
        wRemainLen = size;
        while(wRemainLen > 0) {
            if(0 != ptFlashDevice->tFlashops.EraseSector(addr)) {
                LOG_E("erase Failed! addr is (0x%p)\n", (void *)addr);
                return -1;
            }

            for(wSector = 0; wSector < SECTOR_NUM; wSector++) {
                if(ptFlashDevice->ptFlashDev->sectors[wSector + 1].szSector == 0XFFFFFFFF )
                    break;

                if(((addr - ptFlashDevice->ptFlashDev->DevAdr) < ptFlashDevice->ptFlashDev->sectors[wSector + 1].AddrSector) &&
                   ((addr - ptFlashDevice->ptFlashDev->DevAdr) >= ptFlashDevice->ptFlashDev->sectors[wSector].AddrSector) )
                    break;
            }

            addr += ptFlashDevice->ptFlashDev->sectors[wSector].szSector;
            wRemainLen -= ptFlashDevice->ptFlashDev->sectors[wSector].szSector;
        }

        return size;
    }

    return -1;
}

int32_t target_flash_verify (uint32_t addr, uint8_t *buf, int32_t size)
{

    return size;
}

五、快速使用

本项目借用了rtthread的自动初始化机制和链表,所以最快的使用方式是直接作为rtthread的软件包使用,使用方法如下:

1.在rtthread软件包中找到flash_blob,然后添加进工程。
2. 通过tools文件下的工具,生成对应的xxx.FLM.c文件,将xxx.FLM.c添加进工程,如果有多个flash器件,可以连续添加。
注意:多个设备的话每个flash的FlashDevice 的设备起始地址不可重叠,flash抽象层根据地址,自动选择相应的驱动。
3.由于flash驱动需要占用“r9”寄存器,所以需要在编译选项中添加-ffixed-r9

在这里插入图片描述

以上步骤完成后,就可以快速使用了,例如将YMODEM接收到的数据,写到flash中,代码如下:

uint8_t *ymodem_call_back_receive(uint8_t *pchBuffer, uint16_t hwSize)
{
    static char *s_pchFileName = NULL, *s_pchFileSize = NULL;
    static uint32_t s_wFileSize = 0, s_wRemainLen = 0, s_wOffSet = 0;

    static enum  {
        START = 0,
        RECEIVE,
        END,
    } s_tState = {START};

    switch(s_tState) {
        case START:
            s_wOffSet = 0;
            s_pchFileName = (char *)&pchBuffer[0];
            s_pchFileSize = (char *)&pchBuffer[strlen(s_pchFileName) + 1];
            s_wFileSize = atol(s_pchFileSize);

            LOG_D("Ymodem file_name:%s", s_pchFileName);
            LOG_D("Ymodem file_size:%d", s_wFileSize);

			if(target_flash_init(APP_PART_ADDR, s_wFileSize) == false) {
				LOG_E("target flash uninit.");
				return NULL;
			}

			if(target_flash_erase(APP_PART_ADDR, s_wFileSize) < 0) {
				LOG_E("target flash erase error.");
				return NULL;
			}            

            s_tState = RECEIVE;
            break;

        case RECEIVE:
            s_wRemainLen = s_wFileSize - s_wOffSet;

            if(hwSize > s_wRemainLen) {
                hwSize = s_wRemainLen;
                s_tState = END;
            }

			if(target_flash_write(APP_PART_ADDR + s_wOffSet, pchBuffer, hwSize) < 0) {
				LOG_E("target flash write data error.");
				return NULL;
			}
			s_wOffSet += hwSize;
            
            break;

        case END:
            target_flash_uninit(APP_PART_ADDR);                        
            s_tState = START;
            break;
    }

    return s_chBuffer;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/148027.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++STL之stack容器和优先级队列底层详解

一&#xff1a;stack容器1.1&#xff1a;容器适配器概念&#xff1a;容器适配器是用特定类封装作为其底层的容器&#xff0c;并提供一组特定的成员函数来访问元素&#xff0c;stack的底层容器可以是任意的类模板&#xff0c;或者一些其他的容器类&#xff0c;这些容器类应该支持…

JavaScript详解

目录 1.JavaScript基础知识 1.1 JavaScript概述 1.1.1 JavaScript历史 1.1.2 JavaScript是什么 1.1.3 JavaScript的作用 1.1.4 HTML/CSS/JS的关系 1.1.5 基本特点 1.1.6 浏览器执行JS简介 1.1.7 JavaScript脚本语言的组成 1.2 JavaScript使用方法 1.3 JavaScript输…

论文创新及观点2

题目 Zero-Shot Visual Recognition using Semantics-Preserving Adversarial Embedding Networks 摘要 基于visual-semantic embedding&#xff0c;的ZSL方法存在信息损失(semantic loss),的问题&#xff0c;在训练过程中&#xff0c;如果某些语义信息对分类的区分性不大&a…

「项目管理」如何做好研发FO角色?

角色定位 FO &#xff08;Feature Owner&#xff09;&#xff0c;项目某一阶段/版本迭代生命周期的总负责人。基于从需求发起、研发接入、上线等项目过程阶段&#xff0c;可以根据职责本位不同来推荐具体项目成员、干系人担任FO角色&#xff0c;前端、 客户端 、服务端、测试、…

Spring事务和事务传播机制

⭐️前言⭐️ 事务是作为一名后端程序员&#xff0c;必须去要了解清楚的东西&#xff0c;因为它决定了程序的正常运行以及与程序运行效率之间的权衡&#xff0c;这篇文章我们就来了解一下Spring事务和事务传播机制。 &#x1f349;欢迎点赞 &#x1f44d; 收藏 ⭐留言评论 &am…

【阶段三】Python机器学习08篇:机器学习项目实战:决策树分类模型

本篇的思维导图: 决策树模型简介 决策树模型的基本原理是通过对一系列问题进行if/else的推导,最终实现相关决策。 下图所示为一个典型的决策树模型——员工离职预测模型的简单演示。该决策树首先判断员工满意度是否小于5,若答案为“是”,则认为该员工会离…

07、ThingsBoard本地打镜像上传到harbor

1、Harbor是什么? Harbor是为企业用户设计的容器镜像仓库开源项目,包括了权限管理(RBAC)、LDAP、审计、安全漏洞扫描、镜像验真、管理界面、自我注册、HA等企业必需的功能,同时针对中国用户的特点,设计镜像复制和中文支持等功能。 2、安装Harbor 2.1、下载地址 Tags g…

【看表情包学Linux】探讨项目构建问题 | Makefile | 依赖关系与依赖方法 | 伪目标 PHONY

&#x1f923; 爆笑教程 &#x1f449; 《看表情包学Linux》&#x1f448; 猛戳订阅 &#x1f525; &#x1f4ad; 写在前面&#xff1a;本章我们要学习的是 makefile。会不会写 makefile&#xff0c;从一个侧面说明一个人是否具备完成大型工程的能力。一个工程中的源文件不计…

学计算机专业的你后悔了吗?

先说结论&#xff1a;不后悔。当年高考的时候&#xff0c;老师和我们说&#xff0c;将来环境、船舶、园林专业肯定特别吃香&#xff0c;填志愿的时候记得都选上。现在来看&#xff0c;这几个专业妥妥的天坑专业&#xff0c;前段时候还认识一个船舶专业的博士报培训班转计算机&a…

【GNN】图基本知识代码、nxworkx包的基本使用

一个写得很好的博客&#xff1a; 图或网络中的中心性&#xff1a;点度中心性、中介中心性、接近中心性、特征向量中心性、PageRank 特征向量中心性&#xff08;eigenvector centrality&#xff09; 特征向量中心性的基本思想是&#xff0c;一个节点的中心性是相邻节点中心性的函…

Kali Linux渗透测试小实践——Metasploit与后门木马

一、环境和工具准备 1.Metasploit Metasploit是一款开源的安全漏洞检测工具&#xff0c;可以帮助安全和IT专业人士识别安全性问题&#xff0c;验证漏洞的缓解措施&#xff0c;并管理专家驱动的安全性进行评估&#xff0c;提供真正的安全风险情报。这些功能包括智能开发&#…

MySQL常用基础 - 小白必看

MySQL数据库基本操作 一、DDL 概念&#xff1a;是一个数据定义语言 该语言部分包括&#xff1a; 1、对数据库的常用操作 创建数据库&#xff1a; 1、create database 数据库名 (直接删除) 2、create database if not exists 数据库名 &#xff08;判断数据库是否存在&…

Allegro174版本新功能介绍之去掉拷贝自动偏移功能

Allegro174版本新功能介绍之去掉拷贝自动偏移功能 Allegro升级到了174版本的时候,在用拷贝功能的时候,不管怎么拷贝都会出现偏差,即便是拷贝坐标的方式,如下图 那是因为174新增了一个自动粘贴的功能,按照下面的步骤可以去除自动粘贴的功能,具体操作如下 选择Setup选择Use…

1.《计算机组成原理》之初识计算机系统

一、基本内容&#xff1a;基本部件的结构和组织方式。基本运算的操作原理。基本部件和单元的设计思想。二、特色&#xff1a;计算机组成的一般原理&#xff0c;不以具体机型为依托。采用自顶向下的方式、层层细化。三、补充&#xff1a;一、基本内容&#xff1a;1.这门课讲什么…

【JavaScript】JavaScript中的时间函数

JavaScript中的时间函数 关于JavaScript里面时间的函数&#xff1a; 方法描述Date()返回当日的日期和时间。getDate()从Date对象返回一个月中的某一天&#xff08;1 ~ 31&#xff09;。getDay()从Date对象返回一周中的某一天&#xff08;0 ~ 6&#xff09;。getMonth()从Date…

LeetCode 热题HOT100-两数之和(C语言)

LeetCode 热题HOT100-两数之和&#xff08;C语言&#xff09; 作为一名程序语言的学习者&#xff0c;刷力扣我想是必要经历的一条路&#xff0c;所以我也在这里分享刷题后所得知识&#xff0c;也可以帮助更多人理解题意。 给定一个整数数组 nums 和一个整数目标值 target&#…

Zynq PS之UART调试

在创建应用工程时&#xff0c;选择Hello World模板即可&#xff0c;以XCZU21DR开发。 硬件原理图如下&#xff1a; Vivado中添加&配置IP 添加Zynq UltraScale MPSoc IP。 UART设置 DDR配置 硬件设计中选择的DDR4型号是MT40A2G8VA-062E IT&#xff0c;DDR配置如下图&…

6、SySeVR复现——Data preprocess(下)

紧接着上篇SySeVR复现——Data preprocess&#xff08;上&#xff09;5、SySeVR复现——Data preprocess&#xff08;上&#xff09;_sliver呀的博客-CSDN博客 目录 5、训练Word2vec模型 6、token向量化且划分数据集 7、固定每一个切片的长度 5、训练Word2vec模型 对应crea…

Jetpack Compose中使用Notification

发送通知相关的主要有两个关键的类 NotificationCompat.Builder 和 NotificationManagerCompat 为方便使用&#xff0c;首先定义一个扩展工具类来管理通知 const val MAIN_CHANNEL_ID "MainChannel ID" const val MAIN_CHANNEL "MainChannel"fun Contex…

人工智能导论实验——前馈神经网络

实验目的通过实验了解全连接神经网络的结构&#xff0c;应用全连接网络处理分类和回归任务。实验任务1&#xff09;初级实验&#xff1a;①手写体图像识别实验&#xff1b;②FashionMnist图像分类实验&#xff1b;③汽车里程数预测实验。2&#xff09;中级实验&#xff1a;①鸢…